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ABSTRACT

Computational modeling and experimental/clinical prediction of the complex signals during cardiac arrhythmias have the potential to lead to
new approaches for prevention and treatment. Machine-learning (ML) and deep-learning approaches can be used for time-series forecasting
and have recently been applied to cardiac electrophysiology. While the high spatiotemporal nonlinearity of cardiac electrical dynamics has
hindered application of these approaches, the fact that cardiac voltage time series are not random suggests that reliable and efficient ML
methods have the potential to predict future action potentials. This work introduces and evaluates an integrated architecture in which a long
short-term memory autoencoder (AE) is integrated into the echo state network (ESN) framework. In this approach, the AE learns a com-
pressed representation of the input nonlinear time series. Then, the trained encoder serves as a feature-extraction component, feeding the
learned features into the recurrent ESN reservoir. The proposed AE-ESN approach is evaluated using synthetic and experimental voltage time
series from cardiac cells, which exhibit nonlinear and chaotic behavior. Compared to the baseline and physics-informed ESN approaches, the
AE-ESN yields mean absolute errors in predicted voltage 6–14 times smaller when forecasting approximately 20 future action potentials for
the datasets considered. The AE-ESN also demonstrates less sensitivity to algorithmic parameter settings. Furthermore, the representation
provided by the feature-extraction component removes the requirement in previous work for explicitly introducing external stimulus cur-
rents, which may not be easily extracted from real-world datasets, as additional time series, thereby making the AE-ESN easier to apply to
clinical data.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087812

Time series of cardiac electrical signals during arrhythmias can
exhibit highly nonlinear and chaotic dynamical behavior, making
forecasting of their dynamics challenging. However, estimates of
future system states could facilitate the development of improved
arrhythmia control and termination methods by allowing oppor-
tunities for early intervention. Data-driven methods have shown
promise in forecasting tasks, such as these, but finding appropri-
ate values for the many network parameters and hyperparameters
involved is a difficult and time-consuming task. Here, we aim to
decrease sensitivity to parameter values and to improve perfor-
mance in a cardiac application of an echo state network (ESN) by
incorporating an autoencoder (AE), which automatically extracts
signal features to learn a compressed representation of the time

series. We show that the integration of an AE with an ESN
can produce reliable and robust predictive models for long-term
forecasting of experimentally recorded complex cardiac action
potential time series.

I. INTRODUCTION

Cardiac cells exhibit a range of complex nonlinear behav-
ior, particularly in how the transmembrane potential changes over
time.1,2 Most cardiac cells are excitable systems, with a stable rest
state and production of an action potential when a super-threshold
stimulus is supplied, leading to propagation of electrical waves that
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activate the heart’s contraction in space.3 As the period of stimula-
tion is decreased below a critical value, often, a bifurcation occurs in
a state of alternans,4–6 in which action potentials alternate in dura-
tion and amplitude7 between long and short; further bifurcations
to higher-order rhythms can also occur.8 In space, alternans can
become very complex9–12 and frequently degenerates into the disor-
ganized and potentially lethal state of fibrillation, characterized by
one or more reentrant spiral or scroll waves of electrical activity
rotating at frequencies several times faster than the heart’s natu-
ral pacemaker-driven rhythm.13–15 A number of methods to control
cardiac alternans, and, therefore, to prevent one important route
to fibrillation, have been proposed;16–19,19,20 however, many factors
make application of such methods difficult, including the speed
with which alternans can transition to fibrillation.7,21 Accurate and
rapid forecasting22 of future cardiac voltage states could provide cru-
cial time to intervene before fibrillation develops.23–25 In this paper,
we investigate how machine-learning (ML) techniques developed
for time-series forecasting can be employed to help predict cardiac
electrical dynamics efficiently and accurately.

In general, time series are a natural way to represent sequential
and temporal data that are ubiquitous in a wide range of real-
world applications, including biology,26 climate science,27 anomaly
detection in computer networks28 and social networks,29 finance,30–34

and energy.35–37 Accordingly, time-series forecasting has remained
an interesting, yet challenging, problem for decades. In recent
years, advances in deep-learning approaches have provided func-
tional alternatives that outperform traditional techniques in many
time-series forecasting applications.

Recurrent neural networks (RNNs) and, in particular, the
gated architectures, such as the long short-term memory networks
(LSTMs) and the gated recurrent units (GRUs), have been demon-
strated to be successful for predicting time series in many appli-
cations, such as voice recognition,38 natural language processing,39

and analyzing and forecasting market data.40 However, they are not
always successful in long-term prediction of complex time series
representing the state of nonlinear and chaotic dynamical systems.22

The reservoir computing (RC) framework was introduced as a
learning paradigm derived from RNNs in which the hidden layer
is composed of a set of hidden units connected to each other
randomly and the training process remains limited to the output
layer.41,42 Despite this considerable simplification resulting in a sub-
stantial reduction in the computational costs, these networks have
shown to be very successful in forecasting nonlinear and chaotic
time series.43–46 Echo state networks (ESNs) are a commonly used
realization of an RC framework, and several variants of these net-
works have been proposed and evaluated.45 Nonetheless, on account
of the intrinsic randomness in constructing ESNs, obtaining reli-
able prediction results heavily depends on finding an appropriate
set of hyperparameters and network parameters when forming the
network, which can be cumbersome, and the added computational
expense of searching for appropriate parameter values may degrade
the overall efficiency of the approach. This sensitivity of ESNs to its
hyperparameters and randomly chosen untrained parameters makes
it unclear whether this approach will be useful for real-world appli-
cations. Still, the low-computational cost and promising results in
forecasting chaotic time series have motivated further research to
improve the reliability and robustness of ESNs.46,47

We previously demonstrated for cardiac voltage time series22

that ESN performance can be highly affected by the time resolu-
tion of the input time series and that resampling can considerably
improve the prediction ability of the ESN while reducing its sen-
sitivity to the initial values. We also illustrated that an adaptive
resampling, which selects a subset of points in the dataset designed
to maintain adequate resolution in both time and the variable of
interest, can effectively improve the prediction results. However,
such a resampling approach needs expert supervision and tuning
efforts to guarantee that the important features of the input time
series are included in the resampled version.

These observations suggest the application of a feature-
extraction method to learn an implicit representation of the input
time series and circumvent the need for a manual resampling step.
Accordingly, this work introduces an AE-ESN, an integration of
an autoencoder (AE) into the ESN framework to predict the car-
diac action potential time series, wherein an LSTM AE provides a
feature-extraction component. We apply the integrated approach
to forecasting cardiac action potential time series obtained in sil-
ico and in ex vivo experiments that exhibit nonlinear behaviors. We
demonstrate that this technique provides higher prediction accu-
racy compared to the baseline ESN and a physics-informed variant
of ESN, also known as hybrid ESN (HESN). In particular, the pro-
posed AE-ESN approach improves prediction accuracy, with the
ESN approaches achieving the mean absolute error (MAE) values
between 6 and 14 times higher for the cases considered, and can cap-
ture the dynamics of the system described by the input time series,
while its performance is almost independent of the initial network
parameters.

The rest of this paper is organized as follows. Section II presents
a background about ESNs and AEs and highlights the main features
of their design. The details of the proposed method are discussed in
Sec. III, and its performance in forecasting nonlinear synthetic and
experimental time series of cardiac voltage is evaluated in Sec. IV.
Finally, Sec. V presents some discussion and concluding remarks.

II. BACKGROUND

Below, we briefly review the main components of the ESNs and
AEs.

A. Echo state networks

Echo state networks (ESNs) were introduced as a realization
of the reservoir computing (RC) paradigm in which the recurrent
layer is represented as a reservoir of randomly connected hidden
units, and the training process remains limited to the weights of a
linear memory-less readout layer. Consequently, ESNs offer a low-
computational-cost approach for forecasting time series and have
been employed to model and predict nonlinear time series for the
last two decades.41,45

Figure 1(a) illustrates the main components of an ESN: (i) an
input layer accommodating the input time series, (ii) a randomly
built reservoir of sparsely connected neurons, and (iii) a readout
layer. The most commonly used variant of ESNs employs the “leaky”
update model,48 where the state update reads as

ht = (1 − α)ht−1 + α tanh (Winxt + Wht−1). (1)
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FIG. 1. The main components of (a) an ESN, including the input layer, reservoir
of randomly connected neurons, and the output readout layer, and (b) an HESN
with an additional input signal from the knowledge-based model.

In this formalism, Win and W are randomly initialized matrices
representing the input weight and reservoir weight matrices, respec-
tively, and both remain untrained. The reservoir state at time step t is
denoted by ht, and α ∈ [0, 1] is defined as the leaking rate. The size
of the input layer is determined by the number of input variables,
which are denoted by xt. Accordingly, the output of the network is
calculated by the following equation:

yt = fout
(

Wout [xt; ht]
)

, (2)

where fout denotes the output layer activation function, normally
chosen here as a unity function. The output weights Wout are
obtained by a regularized least-squares regression with Tikhonov
regularization to avoid overfitting.

In the case of physical dynamical systems, domain knowledge
can also be integrated into an ESN to construct a hybrid physics-
informed variant of ESNs known as HESN. This approach has
recently been demonstrated to be effective for forecasting nonlin-
ear time series in a number of applications.22,49–51 HESNs add a
knowledge-based mathematical model describing an approximation
of the dynamical system as an additional input fed into the net-
work to improve its prediction performance [see Fig. 1(b)]. Since
this method has been shown to be successful for predicting cardiac
action potentials,22 in this work, in addition to the baseline ESN, we
also compare the obtained results with an HESN.

FIG. 2. The main components of an AE, including the encoder, the latent space
also known as the bottleneck layer, and the decoder.

B. Autoencoder

AEs are unsupervised neural networks trained to reconstruct
the input data, for which they aim to learn an approximation of the
identity function by setting the target values equal to the inputs.52

Such architectures originally were introduced for internal represen-
tation learning and feature extraction,53 but later, their applications
were extended to anomaly detection,54,55 nonlinear dimensionality
reduction,56 and recommender systems.57

As demonstrated in Fig. 2, an AE consists of three main com-
ponents: (i) the encoder, which compresses the input into a latent
space representation and provides a reduced representation of the
input data; (ii) the latent space sometimes known as the bottle-
neck or the code layer, which represents the compressed version
of the input; and (iii) the decoder, which decodes the encoded
representation back to the original dimension. This purposefully
designed structure enables AEs to automatically extract the high-
level features of the input data by imposing certain constraints
on the network, such as limiting the number of hidden units
in the bottleneck layer.58 The automatically learned features can
then be used to improve the prediction ability in other ML tech-
niques, particularly compared to cases where features are selected
manually.59–61

AEs normally are trained by applying the backpropagation
approach to minimize the reconstruction error between the input
data and the reconstructed data obtained at the output layer. This
error is usually measured by a squared error or cross entropy.
Accordingly, optimization techniques, such as stochastic gradient
descent (SGD), can be employed to optimize the obtained loss
function and train the network.

Several variants of AEs have been proposed to learn richer
representations of the inputs, such as deep AEs,62,63 which take
advantage of higher degrees of nonlinearity to extract the high-level
features, and LSTM AEs, in which LSTM layers are employed for the
encoding and decoding phases.64–66 LSTMs and gated RNNs, in gen-
eral, are considered the most effective approaches for dealing with
sequential data and forecasting time series;52 memory cells replace
the usual hidden units in the network, making them successful in a
wide range of practical applications.43,67 Accordingly, the LSTM AEs
have been successfully employed in feature extraction and anomaly
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FIG. 3. Integrated architecture of the LSTM AE and ESN.

detection tasks in various real-world applications where time-series
data are involved.68–71

III. METHODS

A. Architecture

Conventional ESNs [see Fig. 1(a)] apply a complex nonlin-
ear transformation to the input data mapping the given time series
to a higher-dimensional space, where the reservoir of randomly
connected neurons constructs a representation of the input data.
Therefore, the size of the reservoir must be large enough to pro-
vide rich dynamics and to capture the behavior of the dynami-
cal system represented by the input time series.72 However, the
capabilities of ESNs can be obscured by the intrinsic randomness

in their construction, which makes them highly sensitive to the
values of non-trainable parameters. This particularly becomes a
problem when the input time series demonstrates highly nonlinear
behavior.22,73

To overcome these limitations and to achieve a better rep-
resentation of the inputs, we introduce the AE-ESN approach in
which an LSTM AE is integrated into the ESN framework. In our
proposed technique, at first, an LSTM AE is trained using the train-
ing dataset to learn the higher-level features of the input data, and
then the trained encoder serves as a feature-extraction layer located
between the input layer and the recurrent reservoir. Thus, instead
of the direct use of input data, the learned features are fed to the
ESN reservoir. Figure 3 outlines the main features of the proposed
approach.
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FIG. 4. Integrated architecture of the LSTM AE and ESN, where the input time series and the extracted features are input to the ESN.

It has also been demonstrated that the compressed
representation learned by such unsupervised AEs can be employed
as additional inputs to other supervised ML methods to improve
prediction performance.52,74 Therefore, in this work, we also investi-
gate augmenting the ESN inputs with the extracted features obtained
in the AE latent space, as shown schematically in Fig. 4.

Network parameters for our implementations are selected
through a hyperparameter optimization process, as described in
Sec. III E, with specific values given in Tables S1–S3 of the
supplementary material.

B. Training

The optimum values of weights and biases of the AE and the
weights of the readout layer in ESN are determined during the
training process, which includes two main steps. First, an AE is con-
structed by stacking LSTM layers in the encoder and decoder parts
to form a symmetrical architecture. This model is trained by a back-
propagation approach using the training data. Once the model is
trained, the reconstruction part of the network can be discarded, and
only the trained encoder is connected to the ESN reservoir. The out-
put of such a trained AE at the bottleneck provides a fixed-length
vector, which can be interpreted as the compressed representation
of the input data and is treated as an additional input to the ESN.

Afterward, the weights of the readout layer, i.e., Wout, are
obtained using a regularized linear regression method. For this pur-
pose, the switch in Fig. 4 is set to the “Training” mode. Then, the
training dataset is input to the network, one value at a time, and
the states of the reservoir hidden units are recorded in an n-by-d
state matrix H, where n is the reservoir size and d is the number
of training time steps. Also, the desired output values are stored
in a vector y. Accordingly, the readout weights can be obtained in
one step using the Moore–Penrose generalized matrix inverse or the
pseudo-inverse of the matrix H as follows:

Wout
=

(

HTH + λI
)−1

HTy, (3)

where λ is the regularization factor in the ridge regression method
and I denotes the identity matrix.

One important consideration in the ESN training phase is dis-
carding the states of the initial steps of the network. This is crucial
to guarantee that the initial states of the reservoir are washed out
and the state matrix only includes the state of the system describ-
ing its dynamics. In this work, we assign the beginning of each time
series containing the first ten action potentials as the pretrain period,
where the network states are discarded and do not contribute in the
training process (see Figs. 5–7).

More information about the hyperparameter selection process
is included in Sec. III E; specific values for the hyperparameters can
be found in Tables S1–S3 in the supplementary material.

FIG. 5. Action potential time series generated by the Fenton–Karma model with
the random pacing approach described in the text. (a) Voltage time series, includ-
ing pre-training data (gray), training dataset (blue), and testing dataset (black).
(b) Voltage trace corresponding to the shaded region in panels (a) and (c) illustrat-
ing the variation in the action potential shapes and durations. (c) Corresponding
APDs following the same color scheme as panel (a).
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FIG. 6. Action potential time series generated by the Beeler–Reuter model.
(a) Voltage time series, including pre-training data (gray), training dataset (blue),
and testing dataset (black). (b) Voltage trace corresponding to the shaded
region in panels (a) and (c) illustrating the variation in action potential shapes
and durations. (c) Corresponding APDs following the same color scheme as
panel (a).

C. Prediction

For the prediction phase, when the fully trained model is
employed for forecasting the future values, the switch in Fig. 4
is set to the “Prediction” mode. In this way, once the readout
layer is trained, a recursive approach performs multi-step predic-
tion into the future, where the prediction results at each time step
are provided as the input for the next time step.

D. Datasets

The effectiveness of the proposed approach is evaluated by pre-
dicting three cardiac action potential time series, the characteristics
of which are described in this section.

1. Dataset 1: Fenton–Karma

The first dataset22 is a randomly timed action potential time
series generated using the Fenton–Karma (FK) model,75 including a
voltage variable and two gating variables. The Beeler–Reuter fitting
of the FK model, where the parameters are set to parameter set 3 in
Ref. 76, is used, and the forward Euler method with a fixed time step
of 0.1 ms is employed to solve the corresponding differential equa-
tions. To generate complex dynamics, the cycle lengths are drawn
from a normal distribution centered at 320 ms with a standard devia-
tion of 50 ms, where a 2-ms stimulus voltage is applied with a relative
magnitude of 0.2 at the beginning of each cycle. Cycle length values
both below and above the bifurcation point, beyond which alternans
would be generated for a fixed cycle length, are included to allow a
wide range of APD values (about 200 ms). Figure 5 demonstrates (a)
the resulting voltage trace and (b) the corresponding action potential
duration (APD) values. The training dataset (blue) includes nearly
80 action potentials, while the testing dataset (black) includes about
20 action potentials.

FIG. 7. Experimental action potential time series obtained as a microelectrode
recording from a zebrafish heart. (a) Voltage time series, including pre-training
data (gray), training dataset (blue), and testing dataset (black). (b) Voltage trace
corresponding to the shaded region in panels (a) and (c) illustrating the variation
in action potential shapes and durations. (c) Corresponding APDs following the
same color scheme as panel (a).

2. Dataset 2: Beeler–Reuter

The second dataset is generated using a version of the
Beeler–Reuter (BR) ventricular cell model77modified to generate
chaotic signals via a nonmonotonic APD restitution curve.78 The
BR model consists of a voltage variable, six gating variables, and the
intracellular calcium concentration, with nonmonotonic restitution
achieved by blocking one of the potassium currents (for more detail,
see Ref. 78). The cycle length is set to 350 ms, and a 2-ms stimulus
voltage is applied with a relative magnitude of 0.2 at the beginning
of each cycle. The corresponding differential equations are solved
with a fixed time step of 0.1 ms using forward Euler for the voltage
and calcium variables and backward Euler for the gating variables to
improve stability. Figure 6 illustrates the generated time series con-
sisting of about 140 beats, where the first 10 beats are used in the
pre-training phase (gray), 102 beats for training the models (blue),
and the remaining 28 beats for the testing dataset (black). Note that
the time series is linearly scaled to be within [0, 1].

3. Dataset 3: Experimental data

The third dataset is a microelectrode recording of voltage
recorded from a zebrafish heart as described in Ref. 22; it has been
normalized to lie within the interval [0,1]. Note that the zebrafish
heart is tiny (∼1 mm), and we have not observed any meaningful
spatiotemporal dynamics in these hearts. In addition, microelec-
trode recordings reflect the activity of a single cell, even though the
cell is in a tissue. Thus, we believe that it is appropriate not to con-
sider spatial effects in the zebrafish heart. Figure 7 illustrates the
experimental dataset consisting of about 170 beats, where the first 10
beats are used in the pre-training phase (gray), 125 beats for training
the models (blue), and the remaining 35 beats for the testing dataset
(black).
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E. Implementation

The proposed approach has been implemented in MATLAB
(R2021a), where the AE component is built on top of the Deep
Learning Toolbox. To construct the AEs, the LSTM layers are gener-
ated using the lstmLayer class and stacked, while dropout layers are
interleaved with them to avoid overfitting issues. After training the
AE in the first step of training (see Sec. III B), to connect the trained
encoder to the ESN, a fully connected layer with the same size as the
bottleneck layer is added at the end to transfer the extracted features
to the ESN reservoir.

For all datasets, the architecture of the adopted AE-ESN model
is similar to Fig. 4, with the extracted features fed to the reservoir
along with the input action potential time series. In our initial exper-
iments, we found this topology more effective compared to the other
integrated architecture illustrated in Fig. 3; see the supplementary
material for more details.

To obtain the optimum values of the hyperparameters required
to build the AE-ESN, along with the ESN and HESN models, for
each dataset, an extensive grid search was conducted, where the set
of searched values and the optima found are presented in Tables
S1–S3 in the supplementary material; the selected optimum values
are highlighted in bold.

In comparison with the standard RC techniques, training an
LSTM AE is computationally expensive and involves many hyperpa-
rameters, including the number of hidden units and hidden layers;
the maximum number of training epochs; and the optimizer used for
training and its corresponding hyperparameters, such as the regu-
larization factor, the learning rate, and the learning rate drop factor.
Therefore, conducting a full grid search on all these parameters in
the same way we did for the ESN and HESN parameters is not prac-
tically feasible. Accordingly, in this work, we limit our grid search to
finding the optimum values of the most important hyperparameters,
i.e., the number of hidden units and hidden layers and the learning
rate (see Tables S1–S3 in the supplementary material), while the rest
of the hyperparameters are set to the best found values in our initial
experiments. Toward this end, we used the Adam optimizer to train
the network with the corresponding default training configurations
in MATLAB. The maximum number of training epochs is set to 50
with early-stopping validation patience set to 4 to avoid overfitting.
We also used dropout layers with the probability of 0.2 interleaving
the LSTM layers for further overfitting avoidance in the AE.

IV. RESULTS

We apply the proposed technique to predict three time series
of cardiac action potentials. The results obtained using the AE-ESN
method are compared with baseline ESN and HESN approaches,
whose details have been discussed in our previous work;22,79 a sum-
mary of the configuration used is presented in the supplementary
material.

One important consideration about this comparison is that car-
diac cells in experiments generally are stimulated exogenously so
that in data-driven prediction of action potential time series, the
pacing stimulus must also be introduced to the predictive model
as an additional input signal (see Fig. S1 in the supplementary
material). In contrast, in the proposed AE-ESN approach, the
trained encoder handles the feature extraction task automatically

and provides the ESN part with the required pacing information.
Therefore, the AE-ESN results are obtained without feeding explicit
pacing information to the network and without manual re-sampling
of the input action potential time series, as opposed to the ESN and
HESN approaches.

A. Dataset 1: Fenton–Karma

Figures 8(a)–8(c) show the 19 action potentials predicted by
the AE-ESN approach along with those from the ESN and HESN
approaches. Compared to the ESN and HESN techniques, the volt-
age values predicted by the proposed AE-ESN approach are more
accurate in terms of the absolute metric demonstrated in Fig. 8(d),
which also shows that there is no appreciable growth in error over
time (the slopes of linear fits to the prediction error values over time
are 0.0029, 0.0023, and 0.0005 for ESN, HESN, and AE-ESN, respec-
tively). Figures 8(e)–8(g) illustrate the distributions of the absolute
prediction error for each method and show that the mean absolute
error (MAE) for the AE-ESN (0.008) is smaller than the MAE val-
ues for the ESN (0.046) and HESN (0.055) by factors of 5.8 and
6.9, respectively. Additionally, the predicted APD values in Fig. 9
demonstrate that all three methods can accurately predict the APD
values, with the MAE of the predicted APDs obtained by the AE-
ESN the smallest by factors of 1.7 and 1.9 compared to the ESN and
HESN, respectively.

FIG. 8. FK voltage values predicted by (a) ESN, (b) HESN, and (c) AE-ESN for
about 19 action potentials. Target values are plotted in black for comparison. Panel
(d) shows the absolute error values at each time step for the three methods, and
panels (e)–(g) show histograms of error values for each method along with the
corresponding means and standard deviations.
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FIG. 9. APD prediction results for the FK dataset obtained by the (a) ESN,
(b) HESN, and (c) AE-ESN for about 19 heart beats. Target values are plotted in
black. Panel (d) shows the absolute error values for each APD, and panels (e)–(g)
show histograms of error values for each method along with the corresponding
means and standard deviations.

Note that the features extracted by the autoencoder can be dif-
ficult to interpret. Figure S2 in the supplementary material shows
the output of the encoder for the FK dataset. Although it is not obvi-
ous why these features were selected, together, they are used to form
a good approximation of the system, and basic properties, such as
action potential timing and shapes, are recognizable in many of the
output signals.

One major drawback with ESN techniques is the sensitivity of
the prediction performance to the initial values of the model param-
eters and the initialization technique. Therefore, after constructing
an ESN, extra effort is required to find an appropriate set of param-
eters, which usually consists of an extensive grid search. In contrast,
AE-ESN is less sensitive to the initialization, and once the model is
created, the initialization does not affect the prediction performance.
To evaluate this property, each of the three compared models was
run with 100 various random initializations, and the ranges of the
predicted values are illustrated as shaded regions in Fig. 10. In the
ESN approach, the range of the predicted values obtained by differ-
ent initializations is narrow for only the first three beats and start to
grow over longer times. For instance, at the end of the predicted 19
beats, the prediction results differ from the ground truth by more
than 300%. In contrast, although the range of the HESN prediction
results started to grow after the first two beats, this range remains
limited for a longer period of time, indicating that the knowledge-
based model can reduce variation in the prediction values. Finally,

FIG. 10. Range of the predicted voltage values of the FK dataset obtained by
100 different randomizations using the (a) ESN, (b) HESN, and (c) AE-ESN
approaches. Maximum andminimum voltage values obtained across the 100 trials
are shown to outline the shaded regions.

the bottom panel in Fig. 10 demonstrates the range of prediction
results obtained by the proposed AE-ESN approach with 100 ran-
dom initial values, which reveals that the range of predicted values
remains narrow and close to the target values for the entire test
dataset. This finding indicates that even though the reservoir and the
associated input weights are randomly constructed, taking advan-
tage of the extracted features can reduce the sensitivity of the method
to the initial network parameter values.

B. Dataset 2: Beeler–Reuter

Predicting the action potentials for the BR dataset yields results
similar to those found for the FK dataset. Figures 11(a)–11(c) show
the voltage values across the roughly 28 action potentials of the
dataset. Good fittings are obtained in all cases, and the error does
not grow appreciably over time, as can be seen in Fig. 11(d) (lin-
ear fit slopes: 0.000 10 for ESN, 0.000 22 for HESN, and 0.000 02 for
AE-ESN). Nevertheless, the AE-ESN approach again produces the
highest accuracy. Figures 11(e)–11(g) show that the MAE obtained
is smaller by an order of magnitude for the AE-ESN approach com-
pared to the ESN and HESN methods (0.002 vs 0.028 and 0.026
for ESN and HESN, respectively). In addition, the AE-ESN has the
smallest standard deviation, indicating that the low MAE values
occur consistently across the time series. Because of the low error
across the methods, the APDs can be predicted with little error for
all the methods, as shown in Fig. 12. Still, the MAE for APDs for the
AE-ESN approach is the smallest of the errors for the three methods,
with the HESN outperforming the ESN.

The encoder output for the AE-ESN approach, shown in Fig. S3
of the supplementary material, displays features that appear similar
in general to the same type of output for the FK dataset. The signals
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FIG. 11. BR voltage values predicted by (a) ESN, (b) HESN, and (c) AE-ESN
for about 28 action potentials. Target values are plotted in black for comparison.
Panel (d) shows the absolute error values at each time step, and panels (e)–(g)
show histograms of error values for each method along with the corresponding
means and standard deviations.

again show the timing and shapes of the action potentials in the time
series. Note that the optimal hyperparameters for this dataset lead to
a smaller number of layers and cells for the bottleneck layer so that
only 16 signals are output.

Figure 13 demonstrates the sensitivity of the methods to the
random initialization by displaying the range of output at each
time point across 100 different random seed numbers. This dataset
appears much less sensitive to initialization effects than the FK
dataset such that all three methods have noticeably smaller variabil-
ity. Nevertheless, the variability in the AE-ESN predictions is smaller
than the variability for both the ESN and HESN approaches, each
of which demonstrates more variability within the first few action
potentials than the AE-ESN demonstrates over the entire time series.

C. Dataset 3: Experimental data

The constructed models were applied to predict the experimen-
tal dataset. As can be seen in Fig. 14, the prediction accuracy of
the AE-ESN measured by the absolute error is higher (lower error)
than for the ESN and HESN techniques (mean: 0.010 vs 0.059 and
0.057 for ESN and HESN, respectively). The linear fit slopes (0.0087
for ESN, −0.0003 for HESN, and 0.0006 for AE-ESN) reveal that
the error does not grow over time for the predicted test set. The
same pattern can be observed in the APDs shown in Fig. 15, where
the absolute errors of the predicted values obtained by the AE-ESN

FIG. 12. APD prediction results for the BR dataset obtained by (a) ESN,
(b) HESN, and (c) AE-ESN for about 28 action potentials. Target values are
plotted in black. Panel (d) shows the absolute error values at each beat, and
panels (e)–(g) show histograms of error values for each method along with the
corresponding means and standard deviations.

FIG. 13. Range of the predicted voltage values of the BR dataset obtained by
100 different randomizations using the (a) ESN, (b) HESN, and (c) AE-ESN
approaches. Maximum andminimum voltage values obtained across the 100 trials
are shown to outline the shaded regions.
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FIG. 14. Experimental voltage values predicted by (a) ESN, (b) HESN, and
(c) AE-ESN for about 19 action potentials. Target values are plotted in black for
comparison. Panel (d) shows the absolute error values at each time step, and
panels (e)–(g) show histograms of error values for each method along with the
corresponding means and standard deviations.

approach are consistently less than the absolute errors of the pre-
dicted values by the ESN and HESN for almost the entire test dataset.
Figure S4 in the supplementary material shows the trained encoder
output, which is similar to what was seen for the other datasets.

To compare the sensitivity of the proposed method to the
random initialization, the models were trained with 100 different
random seed numbers and the range of the outputs is presented
as the shaded regions in Fig. 16. The highest variability occurs for
the ESN approach, where the variability increases further into the
future, and the range of predicted values is narrow only for the
first two action potentials. The ranges of the predicted values are
narrower for the HESN results, reflecting the controlling effect of
the knowledge-based model integrated into the network. The best
results occur for the proposed AE-ESN approach, where the range
of the obtained results is very narrow and close to the target values
for the entire test dataset.

D. Sensitivity of results

Each of the methods discussed requires choosing a number of
network settings and parameters. As is typical in machine learn-
ing, we perform an optimization procedure to determine the values
of these parameters and obtain the prediction results using those
values. Using different settings thus would affect the quality of the
prediction. It would be desirable for the prediction method to be
insensitive to key hyperparameters so that the prediction quality

FIG. 15. APD prediction results for the experimental dataset obtained by
(a) ESN, (b) HESN, and (c) AE-ESN for about 19 action potentials. Target val-
ues are plotted in black. Panel (d) shows the absolute error values at each beat,
and panels (e)–(g) show histograms of error values for each method along with
the corresponding means and standard deviations.

would not depend strongly on the selection of these parameters.
In this section, we demonstrate the sensitivity of the predictions to
several important algorithmic parameters.

Some of the main parameters important for ESN approaches
are the number of reservoir hidden units, the connection probabil-
ity, the leaking rate, and the spectral radius. Figures S5 and S6 in the
supplementary material show the effects on the mean absolute pre-
diction error of separately varying these four parameters up to 20%
for the FK dataset by the ESN and AE-ESN, respectively. For the
ESN, the predictions appear to be least sensitive to the leaking rate,
but even in this case, only moderate changes of 5–10% can yield a
substantial decrease in accuracy. For the other parameters, the ESN
is highly sensitive and even moderate changes often lead to results
with an unacceptably large error. In contrast, the results from the
AE-ESN maintain low MAE values below 0.01 except in one case
where it is still below 0.015.

For the BR dataset, MAE values remain higher for the ESN
predictions than for the AE-ESN predictions, as shown in Figs. S7
and S8 of the supplementary material. Although the MAE values for
the ESN predictions are not as high as for the FK dataset, the AE-
ESN achieves much smaller MAE values below 0.005 in all cases and
roughly an order of magnitude smaller than the ESN MAE values.
Among the four parameters considered, the ESN demonstrates the
greatest sensitivity to the spectral radius. The experimental dataset
shows results similar to those obtained for the BR dataset, with the
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FIG. 16. Range of the predicted voltage values of the experimental dataset
obtained by 100 different randomizations using the (a) ESN, (b) HESN, and
(c) AE-ESN approaches. Maximum and minimum voltage values obtained across
the 100 trials are shown to outline the shaded regions.

ESN most sensitive to the number of hidden units and the connec-
tion probability; see Figs. S9 and S10 in the supplementary material.
The MAE using the AE-ESN approach also remains below 0.015 and
about an order of magnitude lower than the ESN error values. Thus,
the AE-ESN, in addition to achieving greater accuracy, also reduces
sensitivity to network parameters.

Another important parameter is the time resolution used in
the input signals. For the ESN and HESN methods, the signals are
resampled according to a parameter included during the optimiza-
tion process; therefore, this discussion is focused on results using the
AE-ESN, which uses a fixed temporal resolution. Figures S11 and
S12 in the supplementary material show the results of changing the
temporal resolution of the FK dataset from its baseline [shown in
panel (b) in both cases], which includes about nine points to resolve
the upstrokes; specifically, this is by increasing resolution by a fac-
tor of 2 [panel (a)] and decreasing resolution by factors of 2.5, 5,
10, and 20 [panels (c)–(f)]. The MAE increases as the resolution of
the training set decreases; it scales by about a factor of −1.5 with
the number of points in the training set. Visibly, the action poten-
tials appear nearly identical even up to a temporal resolution of the
dataset that is five times coarser.

V. DISCUSSION AND CONCLUSION

In this work, we have proposed a novel integrated architec-
ture in which an LSTM AE is integrated into the ESN framework,
with the trained encoder serving as a feature-extraction layer feed-
ing the extracted feature into the recurrent reservoir in the ESN.
We tested this approach against both synthetic and experimental
datasets; in all cases, the predictions across about 20 action potentials

show a considerable improvement in both robustness and predic-
tion performance when using the AE-ESN compared to the ESN
or HESN approaches, as shown in Fig. S13 in the supplementary
material. In particular, prediction accuracy for the voltage is 6–14
times lower when using the AE-ESN in terms of MAE. Notably,
the best improvement occurred for the experimental data case, with
voltage prediction errors differing by factors of 14 and 13 for the
ESN and HESN methods, respectively, when compared to the AE-
ESN. We also evaluated the sensitivity of the proposed approach to
the initial network parameter values and demonstrated that, in con-
trast to the ESN and HESN approaches, the results obtained by the
AE-ESN technique show minimal dependence on the initial values
as well as on the network parameters.

Understanding the source of the considerable improvements
achieved by integrating an AE into the ESN framework requires
considering whether a standalone LSTM AE without an ESN may
also be capable of capturing the dynamics of the system and pro-
vide reliable predictions. However, the application of LSTM AEs for
forecasting both synthetic and experimental action potential time
series resulted in poor prediction performance, revealing that a sin-
gle AE is incapable of forecasting such highly nonlinear time series.
These poor prediction results are not presented in Sec. IV to avoid
inconsistency and dramatic changes in the plot scales. This finding
demonstrates that the combination of an LSTM AE with an ESN
overcomes the poor prediction of complex cardiac time series of
the former and the high sensitivity to initial parameters of the lat-
ter to produce a robust and effective approach for forecasting these
nonlinear time series.

The requirement for training an LSTM AE increases the com-
putational time needed for this approach, which reduces the benefit
of the fast training process and low-computational cost character-
istics typical of ESNs. A fair comparison of the computational time
was not possible in this study since the AEs were trained using a
GPU, while the rest of the computations were handled by the CPU.
Still, training the AE was the most computationally expensive part of
the process in the AE-ESN approach; depending on the complexity
of the AE architecture and the size of the training dataset, it could
take 1–2 orders of magnitude longer than the rest of the process in
terms of wall-clock time for the three evaluated test cases. However,
the reduced sensitivity of the AE-ESN to network parameters poten-
tially could offset the increased computational time of the AE by
allowing use of a lower-resolution grid search in comparison with
baseline ESNs.

An importation limitation of the methods used in this study is
that they are purely data-driven and thus are agnostic to the source
of the time series. As a result, we cannot predict how well the meth-
ods will generalize to other datasets, including time series obtained
under other conditions, such as different pacing protocols; synthetic
datasets generated from the same model using different parameters
or from another model; or experimental datasets recorded from the
same experimental preparation at a different time or location, dif-
ferent preparations from the same species, or different species. For
the same reason, the best performance is obtained by optimizing
hyperparameters and performing training anew for each time series
and/or change to untrained network parameters, which imposes a
high computational cost at present if prediction is to be performed
multiple times. It is an area of active research to understand how
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optimization and training for one dataset may be used to facilitate
the same tasks for a different dataset that has some similarities.80,81

Such transfer learning eventually may decrease computational costs,
for example, by identifying how optimized hyperparameter values
obtained for one dataset may be used to decrease the grid search
time.

We note that the AE-ESN accuracy improvements are more
modest when predicting APD rather than a more detailed predic-
tion of voltage (and thus action potential shape), especially for the
synthetic datasets. Given the increased computational costs of the
AE-ESN approach, the simpler ESN or HESN may be a useful strat-
egy when predicting only APD values, but for experimental data, the
higher accuracy achieved by the AE-ESN may justify the extra cost.

In terms of parameter sensitivity across the three datasets, the
main conclusion for the ESN was that the accuracy did not depend
strongly on the leaking rate. For the other parameters, changes to
the values resulted in poor accuracy for at least one but not all
datasets considered. No clear conclusions could be drawn regard-
ing the parameters to which the AE-ESN was most sensitive, as the
error changed little within the parameter variations considered.

For the HESN, sometimes unphysiological values, including
negative voltage values, can be obtained depending on the initializa-
tion. In this approach, there is no guarantee for the output to remain
within the expected physical range since the domain knowledge is
integrated as an additional time series fed to the network to promote
the training process and does not directly impose constraints.

It should also be noted that in this study, we considered a lim-
ited number of action potential datasets; different results may be
obtained for different time series representing different dynamical
behavior. As such, although we would expect that the same methods
could be used for datasets from hearts of different species, includ-
ing human hearts, further study is needed to identify characteristics
needed for successful long-term prediction. Furthermore, we con-
sidered a limited number of hyperparameters in the grid search
process, and it is possible that different sets of hyperparameter
values could generate different results.

SUPPLEMENTARY MATERIAL

Additional information regarding Methods and Results is avail-
able in the supplementary material, as indicated in the text.
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