

Network Physiology of Cortico–Muscular Interactions: Reorganization with Sleep Stages Transitions & Neurodegenerative Disorders

Dr Rossella Rizzo

NETWORK PHYSIOLOGY

Welcome to the Keck Laboratory for Network Physiology

Director: Prof. Plamen Ch. Ivanov

Network physiology reveals relations between network topology and physiological function

Amir Bashan^{1,*}, Ronny P. Bartsch^{2,*}, Jan. W. Kantelhardt³, Shlomo Havlin¹ & Plamen Ch. Ivanov^{2,4,5}

The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiological states, the network undergoes topological transitions associated with fast reorganization of physiological interactions. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.

Introduction

NETWORK PHYSIOLOGY^[1,2] EEG [a.u.] (a) **Brain EEG** HR [Hz] (b) Heart rate Resp [Hz] 0.5 - (c)Respiratory 0.2 rate Eye [a.u.] 10^{5} (d) Eye 10movements 9600 9500 9800 Time [sec]

^[2] Bartsch, R. P., Liu, K. K., Bashan, A., and Ivanov, P. Ch. (2015). Network physiology: how organ systems dynamically interact. PloS ONE 10, e0142143. doi:10.1371/journal.pone.0142143

Keck Laboratory for Network Physiology Department of Physics, Boston University

How organ systems dynamically interact?

- Define the organ systems interactions
- Determinate and descriminate physiologic from pathologic conditions

Network Physiology of Cortico–Muscular Interactions

Particular cortical rhythms firing (EEG) [3,4]

at particular cortical locations ^[5]

Cortico-muscular direct coupling

What happens at rest

Default" Brain-Muscle Network Communication

^[3] Ball, T., Demandt, E., Mutschler, I., Neitzel, E., Mehring, C., Vogt, K., et al.(2008).Movement related activity in the high gamma range of the human EEG. Neuroimage 41, 302–310. doi: 10.1016/j.neuroimage.2008.02.032
^[4] Omlor, W., Patino, L., Hepp-Reymond, M. C., and Kristeva, R. (2007). Gammarange corticomuscular coherence during dynamic force output. Neuroimage 34, 1191–1198. doi: 10.1016/j.neuroimage.2006.10.018
^[5] Rendeiro, C., and Rhodes, J. S. (2018). A new perspective of the hippocampus in the origin of exercise brain interactions. Brain Struct. Funct. 223:25272545. doi: 10.1007/s00429-018-1665-6

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

Network Interactions

Changes in physiologic regulation across physiologic states.

^[6] Lin, A., Liu, K. K., Bartsch, R. P., and Ivanov, P. C. (2020). Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function. Commun. Biol. 3, 1–11

- EEG data from six brain locations (Fp1, Fp2, C3, C4, O1, O2)
- chin (mentalis) and leg (tibialis anterioris) muscle tone EMG data
- from 36 healthy subjects (mean age = 29 years)
- 4 major, well defined physiologic states: Wake, REM, Light Sleep (LS), deep sleep (DS)
- 7 cortical rhythms : δ (0.5–3.5 Hz), θ (4–7.5 Hz), α (8–11.5 Hz), σ (12–15.5 Hz), β (16–19.5Hz), γ 1 (20–33.5 Hz), and γ 2 (34–98.5 Hz)
- 7 EMG frequency bands : δ (0.5–3.5 Hz), θ (4–7.5 Hz), α (8–11.5 Hz), σ (12–15.5 Hz), β (16–19.5Hz), γ 1 (20–33.5 Hz), and γ 2 (34–98.5 Hz)

Cleaning procedure:

- Manually removed beginning/end
- 50 Hz notch filter
- Band pass filter [0.5, 98.5] Hz

Bursting morphology for brain C3 and chin and leg muscle tone during Light Sleep ^[7]

^[7] Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

Methods

BOSTON

UNIVERSITY

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., & Ivanov, P. C. (2012). Network physiology reveals relations between network topology and physiological function. Nature communications, 3(1), 1-9.
Bartsch R.P., Ivanov P.C. (2014) Coexisting Forms of Coupling and Phase-Transitions in Physiological Networks. In: Mladenov V.M., Ivanov P.C. (eds) Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science, vol 438. Springer, Cham.

TDS matrix representation of brain-muscle network connectivity across physiologic states [7]

^[7] Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Dynamic networks of cortico-muscular interactions across physiological states

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Coarse-graining procedure

Integrated brain areas and chin EMG frequency bands

Cortical rhythms and integrated muscle tone

0.3

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. Frontiers in Physiology. 2020; 11:558070

dipartimento di ingegneria unipa

Brain rhythms and chin muscle tone interactions

Interaction is mediated through specific rhythms

l la terra e tierra l'Ourseau en la effecte e a Nacture de Discrie le mu (IOINID)

Dynamic networks Brain rhythms and integrated Chin-Muscle tone

Universality

* Network Reorganization

Sleep-stage Stratification

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Interaction Profiles of Network Links Strength Brain waves with integrated Chin-Muscle tone

- Gradual decline in link strength connectivity from Wake to Deep Sleep
- Characteristic profile for each physiologic state
- Universality of coupling profiles across brain locations at a given state
- Right and Left Brain Hemisphere symmetry

dipartimento

di ingegneria

unipa

Università

degli Studi

di Palermo

Dynamic networks Brain rhythms and integrated Leg-Muscle tone

Network Reorganization

***** Sleep-stage Stratification

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Interaction Profiles of Network Links Strength Brain waves with integrated Leg-Muscle tone

- Gradual decline in link strength connectivity from Wake to Deep Sleep
- Characteristic profile for each physiologic state
- Universality of coupling profiles across brain locations at a given state
- Right and Left Brain Hemisphere symmetry

Brain-muscle interaction profiles

Stronger links between same frequency cortical rhythms and EMG frequency bands

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

C4

02

Wake

LILLI

REM

Light Sleep

Deep Sleep-

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. Frontiers in Physiology. 2020; 11:558070

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies - 24-29 July 2022

Brain-muscle interaction profiles

Stronger links between same frequency cortical rhythms and EMG frequency bands

Rizzo R, Zhang X, Wang JWJL, Lombardi F, and Ivanov PCh. Network Physiology of Cortico–Muscular Interactions. *Frontiers in Physiology*. 2020; 11:558070

Part II

Dynamic Networks of Cortico–Muscular Interactions: Breakdown with Parkinson's during Sleep

^[10] Iranzo, A., Molinuevo, J. L., Santamaria, J., et al. (2006). Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. The Lancet Neurology 5, 572-577 ^[11] Postuma, R., Gagnon, J., Vendette, M., Fantini, M., Massicotte-Marquez, J., and Montplaisir, J. (2009). Quantifying the risk of neurodegenerative disease in idiopathic rem sleep behavior disorder. Neurology 72

To map the cortico-muscular networks and their transition across physiologic states in both healthy and PD subjects

To develop useful biomarkers and provide a deeper understanding on the impact of PD on human organism networks.

- EEG data from six brain locations (Fp1, Fp2, C3, C4, O1, O2)
- chin (*mentalis*) and leg (*tibialis anterioris*) muscle tone EMG data
- from 97 healthy subjects (mean age = 67.4 years) and 33 PD subjects (mean age = 72.6 years)
- 4 major, well defined physiologic states: Wake, REM, Light Sleep (LS), deep sleep (DS)
- 7 cortical rhythms : δ (0.5–3.5 Hz), θ (4–7.5 Hz), α (8–11.5 Hz), σ (12–15.5 Hz), β (16–19.5Hz), γ1 (20– 33.5 Hz), and γ2 (34–98.5 Hz)
- 7 EMG frequency bands : δ (0.5–3.5 Hz), θ (4–7.5 Hz), α (8–11.5 Hz), σ (12–15.5 Hz), β (16–19.5Hz), γ 1 (20–33.5 Hz), and γ 2 (34–98.5 Hz)

A TDS matrices of Cortical Rhythms and Leg-Muscle Network Interactions

unipa

across Sleep Stages

dipartimento

di ingegneria

Left Brain Hemisphere

Università

degli Studi

di Palermo

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

A TDS matrices of Cortical Rhythms and Chin-Muscle Network Interactions

B Stratification of Brain-Chin Network Links Strength across Sleep Stages

 $\delta\theta\alpha\sigma\beta\gamma\gamma_2$

Coarse-grained TDS matrices of Cortico-Muscular Interactions Brain Waves with Integrated Leg-Muscle Tone

• Change in sleep-stage stratification pattern

Interaction Profiles: Brain Waves with Integrated Leg-Muscle Tone

• Global decline with Parkinson

- Change in sleepstage stratification pattern
- Change in the frequency profile

Coarse-grained TDS matrices of Cortico-Muscular Interactions Brain Waves with Integrated Chin-Muscle Tone

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

B Sleep-Stage Stratification of Brain-Chin Links across Cortical Areas

 Global decline with Parkinson

• Change in sleep-stage stratification pattern

الا Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

Interaction Profiles: Brain Waves with Integrated Chin-Muscle Tone

- Global decline with Parkinson
- Change in sleepstage stratification pattern
- Change in the frequency profile

Healthy Group Parkinson's Group δ θ βασ βa Wake β в γ_1 γ_1 γ_2 Y2 δ δ **Brain Areas and Chin Bands** θ θ 0.3 β β β a β β REM β Chin α σ β $\tilde{\gamma}_1$ γ_1 γ_2 γ_2 β $\gamma_1 \\ \gamma_2$ δ θ θ Fp1 Fp2 C3 C4 O1 O2 01 02 βa α α σ β LS

β $\frac{\gamma_1}{\gamma_2}$

δ

θ

β β β

 γ_1

Y2

Fp1 Fp2 C3 C4

01 02

Coarse-grained TDS matrices of Cortico-Muscular Interactions Integrated Brain Areas with Leg-Muscle Rhythms

 $\frac{1}{N}$ $TDS[Chin(\Delta f_i); Brain(\Delta f_j)]$ $Brain(\Delta f_j):j=1$ δθασβηη2. Chin 2º Fp2 C3 C4 Fp1

> Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies - 24-29 July 2022

в

 γ_1 γ_2

> δ θ

γ₁ γ_2

C3

C4 01 02

F4

F3

DS

Dynamic Networks: Integrated Brain Areas with Leg EMG Frequency Bands

Interaction Profiles: Integrated Brain Areas with Leg EMG Frequency Bands

- Global decline with Parkinson
- Change in sleepstage stratification pattern
- Change in the frequency profile

Coarse-grained TDS matrices of Cortico-Muscular Interactions Integrated Brain Areas with Chin-Muscle Rhythms

Third International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies – 24-29 July 2022

Dynamic Networks: Integrated Brain Areas with Chin EMG Frequency Bands

Reorganization pattern

Interaction Profiles: Integrated Brain Areas with Chin EMG Frequency Bands

 Global decline with Parkinson

- Change in sleepstage stratification pattern
- Change in the frequency profile

• Structure and dynamic of brain-muscle networks

• Default brain-muscle interaction network

- Identified cortico-muscular networks and how do they respond to different sleep stages
- Discriminate a physiologic situation from **pathologic conditions**
- Useful **biomarkers** for early **PD diagnosis**

Collaborators and friends

Plamen Ch Ivanov

Fabrizio Lombardi

Sergi Garcia-Retortillo

James Holsapple

Jilin JLW Wang

Okeanis Vaou

Xiyun Zhang

Anna Hohler

Research Topic in Frontiers in Network Physiology	
Cortico-Muscul	ar
Network Interact	ions
Image: Submit your research Q Search Q Search	-
Frontiers in Network Physiology Sections -> Articles Research Topics Editorial board About journal ->	Topic Editors
♠ > Frontiers in Network Physiology > Systems Interactions and Organ > Research Topics > Cortico-Muscular Network Inter	

Franca Tecchio

- Rossella Rizzo
- Yuan Yang

Topic coordiantors

• Massimo Bertoli

Funders

The Keck Laboratory for Network Physiology is funded by the W. M. Keck Foundation, National Institutes of Health (NIH Grant 1R01-HL098437), the US-Israel Binational Science Foundation (BSF Grant 2012219), and the Office of Naval Research (ONR Grant 000141010078)

UNIONE EUROPEA Fondo Sociale Europeo

The European Union–ESF, PON Research and Innovation 2014-2020–Ministerial Decree 1062/2021.