Third International Summer Institute on Network Physiology, Como 2022

Modelling and controlling complex dynamics in cardiac networks

Ulrich Parlitz

- Research Group Biomedical Physics Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany
 - Institute for the Dynamics of Complex Systems University of Göttingen

Ulrich Parlitz

- data driven modelling in cardiac research
- transient chaos in cardiac arrhythmias

termination of spatio temporal chaos and defibrillation

Data driven modelling in cardiac research

includes:

mechanical motion)

data driven prediction of future evolution (e.g., membrane voltages,

true

Iterated Forecasting of u(t)forecast

good for 5 spiral rotations

S. Herzog et al., Frontiers in Appl. Math. and Statistics 4, 60 (2018) **ISINP 2022**

Ulrich Parlitz

u - network forecast

u - absolute difference

Data driven modelling in cardiac research

includes:

- data driven prediction of future evolution (e.g., membrane voltages, mechanical motion)
- extraction of relevant features from (noisy) raw data (S. Herzog et al., Frontiers Appl. Math. Stat. 6 (2021))
- classification (e.g., time series, images, evolution of patterns and shapes)
- cross estimation of observables that are difficult to measure directly from available data

Measurement Modalities

mechanical motion 4D ultrasound

- real-time MRI - multi-camera systems *

Ulrich Parlitz

electrical excitation voltage sensitive dyes*

- multichannel - ECG *surface only!

optical mapping using voltage sensitive dyes provides electrical excitation waves only on the surface of the heart

Ulrich Parlitz

From Surface To Depth

3D Barkley model

$$\frac{du}{dt} = D\nabla^2 u + \frac{1}{\varepsilon}u(1-u)\left(u - \frac{v+b}{a}\right)$$
$$\frac{dv}{dt} = u^3 - v$$

a = 0.75 b = 0.06 $\varepsilon = 0.08$ D = 0.02

grid: $120 \times 120 \times 120$

predict deeper layers from data at surface using convolutional neural networks Ulrich Parlitz

Inga Kottlarz

Reconstructions with different input lengths $T \in \{1, 8, 32\}$

Ulrich Parlitz

1.0 Sebastian Herzog

Electrical excitation from mechanical deformation electrical excitation

mechanical deformation

Data generated by a conceptual electro-mechanical model (BOCF model driving a mass-spring system) Convolutional Auto-encoder provides better results than Reservoir Computing)

prediction

S. Herzog et al., Frontiers Appl. Math. Stat. 6 (2021)

Transient Chaos in Cardiac Arrhythmias

Ulrich Parlitz

Transient Chaos

Transient Scroll Wave Dynamics during Ventricular Fibrillation

Experiment Optical mapping of a rabbit heart

Sebastian Berg Daniel Hornung Marion Kunze

Ulrich Parlitz

Simulation in a rabbit heart geometry

Thomas Lilienkamp

Simulation using the Fenton-Karma model

 $\frac{\partial u}{\partial t} = \nabla \cdot \underline{\mathbf{D}} \nabla u - I_{Ion}(u, \mathbf{h}) / C_m$ $\frac{\partial \mathbf{h}}{\partial t} = \mathbf{g}(u, \mathbf{h})$

gating variables $\mathbf{h} = (v, w)$

average transient lifetime increases exponentially with system size

T. Lilienkamp et al., Phys. Rev. Lett. 119 (2017) T. Lilienkamp and U. Parlitz, Phys. Rev. Lett. 120 (2018) Ulrich Parlitz

Controlling Transient Chaos

Potential Implications of Transient Chaos for Defibrillation Persistent chaos vs. Transient chaos

Desired State:

Trajectories: -- ----

kick state into basin of control: another attractor

minimal perturbation strength required

Ulrich Parlitz

kick state to neighbouring orbit with (much) shorter transient time

can be achieved with (very) small perturbations

ISINP 2022

Controlling Transient Chaos

Terminating spiral wave chaos a with few single perturbations

Fenton-Karma model

 $T_{\rm evo} = 500 \, {\rm ms}$

T. Lilienkamp and U. Parlitz, Chaos 30, 051108 (2020)

Ulrich Parlitz

(V_m)[a.u.]

perturbed

unperturbed

ISINP 2022

Terminating Cardiac Arrhythmias (Defibrillation)

Ulrich Parlitz

Defibrillation Reset electrical activity of all cells by synchronous excitation Principle:

internal

Electric shocks: energy 360J (external) 40 J (internal) 1000 V 30 A 12 ms Severe side effects: tissue damage - traumatic pain

Ulrich Parlitz

G.P. Walcott et al., Resuscitation 59, 59-70 (2003)

ISINP 2022

- may act as virtual electrodes

Super-threshold depolarization leads to wave emission if a short rectangular electric field pulse is applied.

A. Pumir and V. Krinsky, J. Theor. Biol. 199, 311 (1999); P. Bittihn et al., Phys. Rev. Lett. 109, 118106 (2012) Ulrich Parlitz **ISINP 2022**

Virtual Electrodes

Termination with a single electrical pulse conventional defibrillation

Probability of defibrillation versus shock voltage for 273 shocks in 23 hearts

sigmoid dose-response curve

from: K.F. Kwaku and S.M. Dillon, Circulation Research 79, 957–973 (1996)

Ulrich Parlitz

Pulse timing matters

simulation study with virtual electrodes simulated by local current injection

- 50 random configurations of N_{pert} perturbations sites acting like virtual electrodes
- 20 realisations (initial conditions)
- compute average success rate from 1000 examples for different numbers N_{pert} of activated virtual electrodes
- larger N_{pert} corresponds to higher field strengths of applied pulses

Success of termination attempts strongly depends on current state of the system (i.e., time when pulse is applied)

average success rate of 100 different configurations of N_pert = 500 perturbations independently applied every 10 ms

perturbation was successful if there are no phase singularities left after 500ms

average success rate S = 6%

Width of the peaks

with low N_{pert} (\sim low energy).

Challenge: Detect these windows using information from observable time series, only!

Ulrich Parlitz

$N_{\text{pert}} = 500 \text{ perturbation sites} (\sim \text{virtual electrodes})$

There are short windows in time where the termination of chaos (~ fibrillation) is possible

Terminate with a sequence of (weak) pulses instead of a single strong shock

Recruiting Networks of Virtual Electrodes for Terminating Cardiac Arrhythmias

Ulrich Parlitz

Animation: T. Lilienkamp

Simulation using a MRT-based heart model

myocard infarction

Ulrich Parlitz

T. Lilienkamp

Low-Energy Anti-Fibrillation Pacing (LEAP)

Pulse Generator Power Amplifier

ISINP 2022

Membrane Potential

mV -80 20

N = 5 low energy pulses E = 1.4 V/cm dt = 90 ms

S. Luther et al., Nature 475, 235 (2011)

Using sequences of pulses may result in non-monotonous dose-response curves and a peak of high termination probability at low pacing energy

T. Lilienkamp et al., Scientific Reports 12, 12043 (2022) Ulrich Parlitz

Use non-equidistant pulse sequences: Deceleration Control

time

--- 10 equidistant pulses

- 5 non-equidistant pulses
- 10 non-equidistant pulses
 - 15 non-equidistant pulses
- 20 non-equidistant pulses

- data driven modelling is a promising approach to predict excitable cardiac dynamics and to reconstruct quantities that are difficult observe directly
- complex cardiac dynamics can be governed by transient chaos
- simulation results indicate that pulse timing is crucial for efficient termination of arrhythmic activity
- (decelerated) pulse sequences of low energy may provide an alternative for defibrillation avoiding strong shocks with adverse side effects

Acknowledgement

Collaboration and support of Stefan Luther, Thomas Lilienkamp, Sebastian Herzog, Alexander Schlemmer, all members of the Research Group Biomedical Physics at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, our clinical partners at the University Medical Center Göttingen (UMG), and many other colleagues and friends is gratefully acknowledged.

