Third International Summer Institute on Network Physiology, Como 2019

The nonlinear dynamics of the heart: collective excitation in networks of cardiac cell

Ulrich Parlitz

- **Research Group Biomedical Physics** Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany
 - Institute for the Dynamics of Complex Systems University of Göttingen

Transitions to Cardiac Arrhythmias

Normal Rhythm

plane waves

Ulrich Parlitz

Tachycardia ———

Fibrillation

electrical excitation waves

spiral waves

chaos simulations: P. Bittihn

ISINP 2022

Outline

- the heart a network of electrically and mechanically coupled contracting cardiac cells
- excitable media, (chaotic) spiral waves, and phase singularities
- measuring cardiac dynamics (optical mapping & ultrasound)

The heart - a network of electrically and mechanically coupled contracting cardiac cells

The heart: A Network of Cardiomyocytes

cardiac muscle

mitochondria

provide adenosine triphosphate (ATP) supply of the cell

myofibrils

provide mechanical contraction

cardiac muscle fibers

BruceBlaus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/ index.php?curid=44969447

cardiac muscle cells

intercalated discs separate cells and consist of gap iunctions that allow ions to propagate to neighbouring cell

Ventricular Cell ~10µm x100µm

© Kornreich & Fenton

The heart: A Network of Cardiomyocytes

Excitation-Contraction Coupling

from: M. Scoote et al., *Heart* 89, 371–376 (2003) Ulrich Parlitz

→ Commotio Cordis

The heart muscle is an excitable medium

Cardiomyoctes (heart cells) are excitable systems

General features of an excitable system:

- dynamical system with a stable fixed point
- small perturbations (or stimuli) from the fixed point decay
- large perturbation (exceeding a certain threshold) result in a large excursion in state space finally re-approaching the stable fixed point
- form and duration of the excitation do not depend on the exact form of the perturbation
- new perturbation affects system only if it is close to fixed point, again → refractory time

Excitable Systems

Excitability: Generation of an Action Potential

adapted from Wikipedia

Ulrich Parlitz

After an excitation the cell can be excited again not before some refractory phase has elapsed.

resting potential

ion pumps maintain concentration difference

time [ms]

A mathematical model of an excitable system

- \mathcal{U} FitzHugh-Nagumo model \mathcal{W}
- qualitative description of neuronal and cardiac dynamics
- *u* cell membrane voltage
- w recovery variable, with much slower dynamics ($\varepsilon = 0.01$)
- (external) injection current (I = 0)

http://scholarpedia.org/article/FitzHugh-Nagumo_model

Ulrich Parlitz

$$= au(u-b)(1-u) - w + I$$
$$= \varepsilon(u-w)$$

FitzHugh-Nagumo model

$\dot{u} = au(u-b)(1-u) - w + I$ $\dot{w} = \varepsilon(u-w)$

I = 0:

u nullcline ($\dot{u} = 0$): $n_u(u) = au(u-b)(1-u)$

w nullcline ($\dot{w} = 0$): $n_w(u) = u$

Datseris and Parlitz, Nonlinear Dynamics, Springer 2022

Ulrich Parlitz

Impact of short rectangular current pulses I(t)

A small perturbation below threshold returns immediately to the fixed point.

Ulrich Parlitz

A second pulse during the refractory phase of the system has almost no impact.

A perturbation above threshold results in an excursion in state space and an action potential.

- An excitable medium
- until some time has passed (refractory period/phase)
- is a spatially extended nonlinear dynamical system which has the capacity to propagate excitation waves, and which cannot support the passing of another wave

→ refractory region/zone

The existence of a refractory region means that an excitation wave cannot propagate in any direction but only to the excitable region of the medium.

As a result, rotating waves, also called spiral waves may occur.

Ulrich Parlitz

The Belousov-Zhabotinsky (BZ) reaction

Development of spiral waves after hydrodynamic breaking of a concentric wave www.scholarpedia.org

Ulrich Parlitz

Geographic Tongue

inflammatory condition of the mucous membrane of the tongue

By Geographic_tongue.JPG: Martanopuederivative work: Jbarta -This file was derived from: Geographic tongue.JPG:, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24437119

The spatiotemporal Fitzhugh-Nagumo model

$$\dot{u} = au(u-b)(1-u) - w +$$

 $\dot{w} = \varepsilon(u-w)$

spatial coupling via diffusion term

spatial domain with no-flux boundary conditions

Depending on initial conditions and specific perturbations plane waves, concentric waves or spiral waves can be generated.

fundamental model describing an excitable medium

ISINP 2022

Fitzhugh-Nagumo model $a = 3, b = 0.2, \varepsilon = 0.01, d = 1$

initial local excitation

Ulrich Parlitz

ISINP 2022

100

 \mathcal{U}

Spiral Tips and Phase Singularities

 ${\mathcal U}$

Ulrich Parlitz

estimate phase at each location X

 $\theta(\mathbf{x}, t) = \arctan 2(u(\mathbf{x}, t) - u^*, v(\mathbf{x}, t) - v^*)$

ISINP 2022

phase

Spiral Tips and Phase Singularities

alternative approach: D.R. Gurevich and R.O. Grigoriev, Chaos 29, 053101 (2019) **ISINP 2022**

Ulrich Parlitz

compute number of spiral waves in a domain \mathcal{D}

$$\oint_{\partial \mathcal{D}} \vec{\nabla} \theta \cdot d\vec{l} = 2\pi (n - m)$$

 $n \ \text{\# clockwise}$ rotating spirals m # counter clockwise

Dynamics of Phase Singularities

scroll waves

2D

3D

filaments

F. Fenton, E. Cherry thevirtualheart.org WebGL simulations

http://thevirtualheart.org/GPU/ WebGL_GPU_spiral_waves_heart.html

ISINP 2022

Measuring Cardiac Dynamics

Measuring cardiac dynamics

using optical mapping and high-speed ultrasound

Ulrich Parlitz

Measuring Cardiac Dynamics

Optical Mapping

Visualisation of membrane voltage and Ca+ concentration on the surface of the heart using fluorescent dyes

Ulrich Parlitz

Measuring Cardiac Dynamics

Optical mapping in Langendorff perfusion system

using voltage sensitive fluorescent dyes

100.000 – 200.000 cases of sudden cardiac deaths in Germany per year

Ulrich Parlitz

Ventricular Fibrillation

J. Schröder-Schetelig

Ulrich Parlitz

Optical Mapping and 4D Ultrasound

Visualizing mechanical scroll waves within the heart muscle using highspeed ultrasound

Mechanical Filament

Acuson SC2000 (Siemens Inc.), Transducer 4Z1c, 2.8 MHz, 134 vps, 0.5 mm

1 cm

Ulrich Parlitz

ISINP 2022

LV

- \bullet
- ulletventricular fibrillation

Ulrich Parlitz

In 1874, Vulpian coined the term "mouvement fibrillaire" for chaotic muscular movements of the ventricles High-resolution 4D ultrasound resolves mechanical motion during

displacement vector field

strain tensor

change of tissue volume, i.e. compression or dilatation

Ulrich Parlitz

The heart

- consists of a network of electrically and mechanically coupled excitable elements
- forming an excitable medium that supports plane waves, spiral waves, and
- (life-threatening) spatio-temporal chaos (e.g., ventricular fibrillation)
- which can be experimentally observed using optical mapping and high-speed ultrasound

Outlook:

- data driven modelling of cardiac dynamics
- transient spatiotemporal chaos
- (low-energy) defibrillation using sequences of weak pulses

Ulrich Parlitz

Acknowledgement

Collaboration and support of Stefan Luther, Thomas Lilienkamp, Sebastian Herzog, Alexander Schlemmer, all members of the Research Group Biomedical Physics at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, our clinical partners at the University Medical Center Göttingen (UMG), and many other colleagues and friends is gratefully acknowledged.

