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MAPPING THE

CANCER
GENOME

Pinpointing the genes involved in cancer will help chart a new
course across the complex landscape of human malignancies

By Francis S. Collins and Anna D. Barker
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Solution: topological analysis of networks
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Solution: topological analysis of networks

How to construct a network if links are unknown??
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Ensemble of correlation, parenclitic and synolitic graphs as a tool to
detect universal changes in complex biological systems
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Fig. 1. Correlations and variance in crisis. The typical picture: Cor 1; Var 1 — stress; Cor |; Var | — recovering; Cor |; Var 1 — approaching the
disadaptation catastrophe after the bottom of the crisis. In this schematic picture, axes correspond to attributes, normalized to the unite variance in the
comfort state.
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Corruption of the Intra-Gene DNA Methylation

Architecture Is a Hallmark of Cancer
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DNA Methylation
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January 2014 | Volume 9 | Issue 1 | 84573
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A DNA Methylation Network Interaction Measure, and
Detection of Network Oncomarkers

Thomas E. Bartlett’*, Sofia C. Olhede®?, Alexey Zaikin'
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Figure 1. The DNA methylation network interaction measure. A combination of the variation of the healthy methylation profiles in regions (a)
and (b) of gene X explains well/is well-explained by a combination of the variation of the healthy methylation profiles in regions (c) and (d) of gene Y.
The green cancer sample varies by a large amount about the mean methylation profile and in a typical way in these regions in both genes. Hence, the
green sample corresponds to a high level of network interaction co-ordinatedness, as measured by the DNA methylation network interaction
measure, pyy = 1. The variation in the other regions of these genes do not well-explain each other, and so the red sample, which varies by a large
amount in these other regions and varies less and in an atypical way in regions (a)-{d), corresponds to a low level of network interaction co-
ordinatedness, pyy =0.07. Genes X and Y are likely to have different numbers of methylation measurement locations {i.e., variables X and Y are of
different dimension). The ordering of the measurement locations has no influence on the calculation of p, as long as the ordering is consistent across

samples.
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DNA Methylation Analysis j

A DNA Methylation Network Interaction Measure, and
Detection of Network Oncomarkers

Thomas E. Bartlett'>*, Sofia C. Olhede?®?, Alexey Zaikin'

Figure 4. Larger significant subnetworks: network diagrams. Network edges displayed in green and red indicate positive and negative
hazard ratios, respectively, for the DNAm network correlation measure corresponding to that interaction; these correspond, respectively, to an
increase and decrease in ‘network interaction co-ordinatedness’ for worse disease prognosis. (a) the KIRC large subnetwork. {(b) the LUAD large
subnetwork. Further details about the corresponding network nodes (genes) for the top 5% of the degree distribution and top 25 significantly

enriched gene sets appear in tables S5-6.

How to build a network if links are unknown?
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Wound healing module (KIRC). ©
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January 2014 | Volume 9 | Issue 1 | 84573 ;

MAP-kinase module (LUSQ).

Figure 3. Smaller significant network modules: network diagrams. Network edges displayed in green and red indicate positive and negative
hazard ratios, respectively, for the DNAm network correlation measure corresponding to that interaction; these correspond, respectively, to an



How to construct a network if links are unknown??
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Parenclitic Network Analysis of Methylation
Data for Cancer ldentification
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Fig 3. Typical examples of parenclictic networks constructed from gene methylation profiles for cancer (left) and
normal (right) samples from BRCA data. Only a 1000 of the strongest edges and their incident nodes are shown. Note the
pronounced modular structure for the cancer network.
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Synolitic networks

as applied to COVID-19
data
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Covid blood test can predict patient Charite University Hospital from

survival chances early March to the end of June

Protein analysis provides digital pi fi d

P ::teali t;;nris{(?lssa l;'r:c ienisist Sgnt picture of immune response an 7 D e C 2 O 2 O
Coronavirus - latest updates “We can predict which patients will need oxygen support and ventilator

See all our coronavirus ¢ rage . .
=R o8 OVEREE  support quite accurately, and we also have markers for patients who are not

that severely ill initially, but are at high risk of getting worse,” said Ralser,
whose research is published as a preprint but has not yet been peer
reviewed.

A It is unlikely that a blood test alone would ever be used to dictate which patients are allocated ICU beds

Cell Systems 2021

A blood test has been developed that can predict whether Covid patients will

need intensive care - or are even likely to survive - shortly after they develop P LO S D | g |ta| H ealth 22

symptoms.
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Parenclitic Networks Predict Nazarenko
Survival for Severely Ill Harry J.

Covid-19 Patients (Grade — "ntwell
WHO = 7) Weeks Before ~ ©€°vus
Outcome with Extremely
High Predictive Power

John F. Timms
Alexey Zaikin

a time-resolved deep clinical and molecular phenotyping of 139 adult patients with
COVID-19 during hospitalization

Cell Systems @ CelPress
OPEN ACCESS
Cell Systems 72, 1-15, July 21, 2021
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A time-resolved proteomic +PLOS Digital Health
and prognostic map of COVID-19 2022

Vadim Demichev,’-2:3:27 Pinkus Tober-Lau,*2” Oliver Lemke,' Tatiana Nazarenko,®'' Charlotte Thibeault,*
Harry Whitwell,®:19:26 Annika Roéhl,' Anja Freiwald,’ Lukasz Szyrwiel,2 Daniela Ludwig,’ Clara Correia-Melo,?




Biomarkers that classify COVID-19 severity

based on clinical chemistry, enzyme activity, immunoprofile,
single cell sequencing, proteomics, and metabolomics.

High-throughput proteomic analysis - 180 samples/day.
309 proteins quantified in undepleted PLASMA using Scanning SWATH with short

gradients.
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Patient State

Uninfected

Descriptor

No clinical or virological evidence of infection

Ambulatory

No limitation of activities

Limitation of activities

Hospitalised - mild disease

No oxygen therapy

Oxygen by mask or nasal prongs

Hospitalised - severe disease

Non-invasive ventilation or high-flow oxygen

Intubation and mechanical ventilation

Ventilation + additional organ support (vasopressors, RRT, ECMO)

WHO ordinal scale for clinical
improvement in COVID-19 as used in the
study (World Health Organisation 2020)



The patients admitted at the Charité University Hospital from early March to the

end of June

All patients

No invasive mechanical ventilation

Invasive mechanical ventilation

Max WHO 3

Max WHO 4

Max WHO 5

Max WHO 6

Max WHO 7

139 23
100% 17%

32

23%

15
11%

)

There were 139 patients, about half of whom were required invasive
mechanical ventilation and half of whom are not. Among these people, 20
patients died, most of them (namely 17 people) are patients with a grade

7.

Charite cohort
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139 patients from Charite hospital admitted with PCR confirmed CoVID. Serum and
clinical diagnostics taken at multiple time points across course of stay — 687 plasma
samples. 309 proteins quantified in undepleted PLASMA using Scanning SWATH with
short gradients. Since mortality was predominantly associated with patients with a
grade 7 (that is, the most severe patients), we selected only them. There were 63

people.

WHO grade 7 patients (63)




outcome (i.e. discharge or death) for them was not established
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WHO grade 7 patients (63)




The remaining 49 patients were divided into a control group (or discharged patients) and a
case group (or deceased patients).
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It should be especially noted that other machine learning algorithms did not give good quality

on this dataset,
and only using of parenclitic networks approach allow us to obtain such a good results.

Original plot
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Synolitic Network Construction (SVM approach)
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Calculate —  Train a
topological classifier
characteristics

Binary classification problem

on networks characteristics




Following cross-validation, the model showed excellent accuracy (AUC = 0.81) despite the median time from
sampling to outcome being 39 days. You also can see interquartile range: from 16 to 64 days.
Especially amazing results (with AUC=1) we had on validation our model on completely independent dataset -

24 Covid-19 patients admitted to the Innsbruck Hospital in Austria.

COVID-19: survival prediction for enitical (WHO umd& 7) natients usine narenchitic networks

Binary classification problem

For cach sample construct a
network, wherein nodes
correspond to proteins
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Age-related trajectories

Age-related trajectories of DNA methylation network
markers: a parenclitic network approach to a
family-based cohort of patients with Down
Syndrome

M. Krivonosov!, T. Nazarenko?", M.G. Bacalini’, M.V. Vedunova!, C. Franceschi'?>,
A. Zaikin'**, and M. lvanchenko!

Down Syndrome methylation data

As an application and demonstration of our implementation, we considered a publicly available dataset (GSE52588) in which
whole blood DNA methylation was assessed by the Infinium HumanMethylation450 BeadChip in a cohort including persons
affected by Down Syndrome (DS), their unaffected siblings (DSS) and their mothers (DSM)?? (29 families in total).
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Figure 3. Top panel: Two sets of the data are used to find a boundary necessary to construct a network. This can be used to
analyse the age-related trajectories for the third class (B-D). Bottom panel: examples how topological indices plotted vs age
enable to find age related trajectories of network signatures. Dependence of characteristics (here, for example, only Number of
zero degrees nodes) of individual networks in DS/AGE/S/M-network design versus AGE (A-D labels respectively). A) Down
methylation network signature. B) Age-accelerated ageing in Downs. C) Hyper-ageing in DS. D) Divergence of trajectories in
Downs and healthy sibs. Plots for all other characteristics can be found in Supporting Information.



But how age accelerated ageing in Downs will depend on a biological age estimated with well- established Horvath’s clock?
This is shown in the Fig. 4. We found a very surprising behaviour when we plotted topological indices versus residuals, i.e., a
difference between a passport age and biological age. DS are closer to mothers, and develop with age towards mothers, i.e.,
their network features are more similar to mothers, the more is age acceleration. However, we find that even for DS with
decelerated ageing, their methylation network signature has a trend towards older mothers. Probably, this can be explained
by the fact that Horvath’s methylation clock has been developed for healthy people and it does not work so well for DSS. In
contrast to it, our approach always shows age acceleration in patients with DS.

AGE-Control
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Figure 4. Dependence of characteristics (here, for example, only
Number of zero degrees nodes) of individual networks in RESIDUALS,
1.e., a difference between passport and biological age. Above zero along
x-axis we have accelearted ageing, below - deccelerated. Still, in both
cases, DS methylation network signature is closer to mothers. Plots for
all characteristics can be found in Supporting Information.
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* Sphere-models: Controls: points with R < 0.5, Cases: points with 0.5<R <1)
* Types of Spheres:

- Ideal Spheres Model — all parameters are sphere parameters Synthetic
- Noisy Spheres Model — 50 noise parameters were added for sphere parameters | Data

(SPHERES)

- Broken Spheres Model — half sphere parameters were changed by noise parameters

For all modelling, we considered all possible combinations of
Sphere Dimensions: (2, 3, 10, 30, 60, 90, 120, 150);

number of Case TRAIN samples: (15, 65, 115, 165, 215, 265)
number of Controls TRAIN samples: (15, 65, 115, 165, 215, 265).

* Numbers of Case TEST samples and Controls TEST samples were calculated as 25% of
corresponding TRAIN numbers.
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Main advantages:
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Main advantages:

Parenclitic approaches on average demonstrate superiority to other ML methods in

situations where sample size is small relative to the number of features
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Parenclitic Synolitic

2

Two-sided Paired
RE AL D ATA Wilcoxon signed-rank test E NOT SIGNIFICANT - SIGNIFICANT,RAW > Strengths ﬁ SIGNIFICANT, Strengths > RAW
wLRPA wKDEPA wSA
. . . 0.4 - g 3 :
https://archive.ics.uci.edu
Number of
Dataset Features | Samples | Cases | Controls Area
Banknote (Ban, 2013) 1372 610 762 Computer z

Blood (Blo, 2008) 748 178 570 Business
Vertebral-2c (Ver, 2011) 310 210 100 Medicine
Breast cancer (Bre, 1995) 699 241 458 Medicine

ILPD (ILP, 2012) 583 167 416 Medicine

PLRX (PLR, 2012) 182 52 130 Computer
Climate (Cli, 2013) 540 494 46 Physical
Diabetic (Dia, 2014) 1151 611 Medicine
SPECT (SPE, 200T) 267 212 Medicine
Tonosphere (Ion, 1989) 351 126 Physical
QSAR (QSA, 2013) 1055 356 Chemical
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Open questions and ongoing work:

1. Comparison with Correlation
graphs

2. Longitudinal Synolitic Networks

3. Graph-based Neural Networks

* Personal Patient Tool?



* Key papers:

* finding longitudinal oncomarkers- License obtained!

Published OnlineFirst July 3, 2018; DOI: 10.1158/1078-0432.CCR-18-0208

Precision Medicine and Imaging

Comparison of Longitudinal CA125 Algorithms as

Clinical
Cancer
Research

a First-Line Screen for Ovarian Cancer in the ®

General Population

Oleg Blyuss', Matthew Burnell', Andy Ryan', Aleksandra Gentry-Maharaj’,
Inés P. Marino'?, Jatinderpal Kalsi', Ranjit Manchanda'?, John F. Timms/,

Check for
updates

Mahesh Parmar?, Steven J. Skates®, lan Jacobs"®’, Alexey Zaikin"®, and Usha Menon'
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Figure 1. igure 2.

Performance characteristics of CA125 interpreted using MMT, threshold rules, econdary analysis ROC curves for CA125 interpreted using MMT, threshold rules
PEB and ROCA for detection of iEOC/PPC cases. Circle points give particular nd PEB for detection of iEOC/PPC cases. Circle points on the ROC curves give
values of sensitivity and specificity provided by MMT and PEB corresponding to articular values of sensitivity and specificity provided by MMT and PEB
cutoff values obtained from the training set (MMT and PEB), CA125 using 22 and Orresponding to cutoff values obtained from the training set (MMT and PEB).
30 U/mL cutoff values and ROCA as reported in ref. (6). Abbreviations: PEB, bbreviations: PEB, parametric empirical Bayes; MMT, method of mean trends;
parametric empirical Bayes; MMT, method of mean trends; CA125, cancer ‘A125, cancer antigen 125; AUC, area under roc-curve.

antigen 125; AUC, area under roc-curve.



Indicators used (for every i-th patient):

Longitudinal analysis of biomarkers * Last measurement
* Trend 1 (Mean derivative)
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Approach

Original dependences X1
and X2 on time
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STEP II: |
o g . SVM-weighted approach
- building simple ...
classification
model (SVM,

GLM, ..) on X1 *"
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STEP lI: probabilities on time
- get probabilities
for each separate g
point and collect %
them to &
longitudinal S
vectors . I

STEP IV:

- For each i sample calculating

A(P, time),

Bi(P, time),

Ci(P, time),

D,(P, time) indices, where P — vector of
probabilities

STEP V:

- Build classification model

M=M(A,B,C,D, score), where M — can be any
of ML model (xgbTree, gimnet, nnet,...)

STEP VI,
- Use probabilities of M model as weights of
edges between X1 and X2 vertices

Weight; = P(M),




Approach |l

STEP I

- For each i sample calculating

Original dependences X1 AXL(X1, time), AX2(X2, time),
and X2 on time BX(X1, time), BX*(X2, time),

class g = 1}

CX(X1, time), CX?(X2, time),
DX}(X1, time), DX%(X2, time) indices;
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X< 1.0 STEP Il:
- Build classification model
i M=M(AX1,BX1,CX1, DX1,AX2,BX2 C*2,DX?,score), where M — can be any of ML model (xgbTree,
. glmnet, nnet,...)
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Combination with Graph Neural Networks
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Combination with Graph Neural Networks
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® Neural Networks
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Number of Features Number of Features

Number of Features

Comparison of the results of parenclitic approaches
The Graph Convolutional Network (GCN) vs ML models (gimnet, nnet, xgbTree), trained on the strengths of vertices on synthetic data

Color bars — confidence intervals of mean( (AUCS TESTS of GCN) - (AUCS TESTS of model on Strengths))
Vertical black line in color bars — the mean

Color of bars, according to two-sided Paired Wilcoxon signed-rank test

Open circles — individual differences of mean

Network
architecture

- - NOT SIGNIFICANT, - SIGNIFICANT, GCN is better, - - SIGNIFICANT, ML Model on Strengths is better
i Input Graph
Ideal Spheres zoomed figure Broken Spheres zoomed figure Noisy Spheres zoomed figure PR P
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