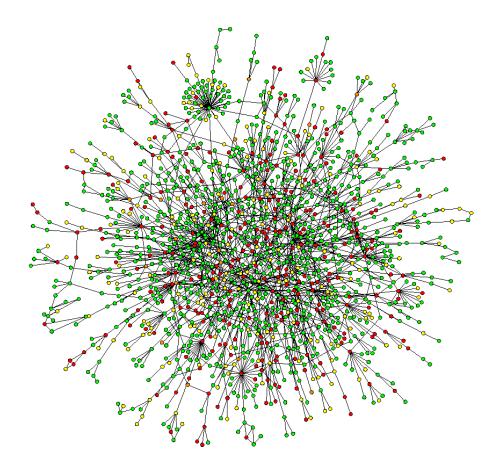
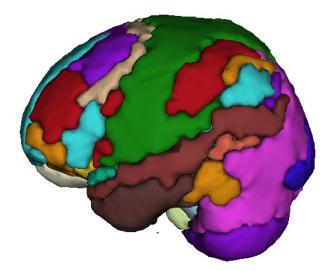
Localizing high order effects in time, and across a complex system

SEBINO STRAMAGLIA


Università degli Studi di Bari Aldo Moro & INFN Sezione di Bari

ISINP 2022– Como July 2022



- 1) O-information: spiking neurons
- 2) Informational character of patterns: application in music
- 3) Gradients of O-information
- 4) Conclusions

Complex Networks

Network Physiology, Network Neuroscience, Network Psychiatry, etc...

Functional Segregation vs Functional Integration

PERSPECTIVE

https://doi.org/10.1038/s41567-021-01371-4

Check for updates

The physics of higher-order interactions in complex systems

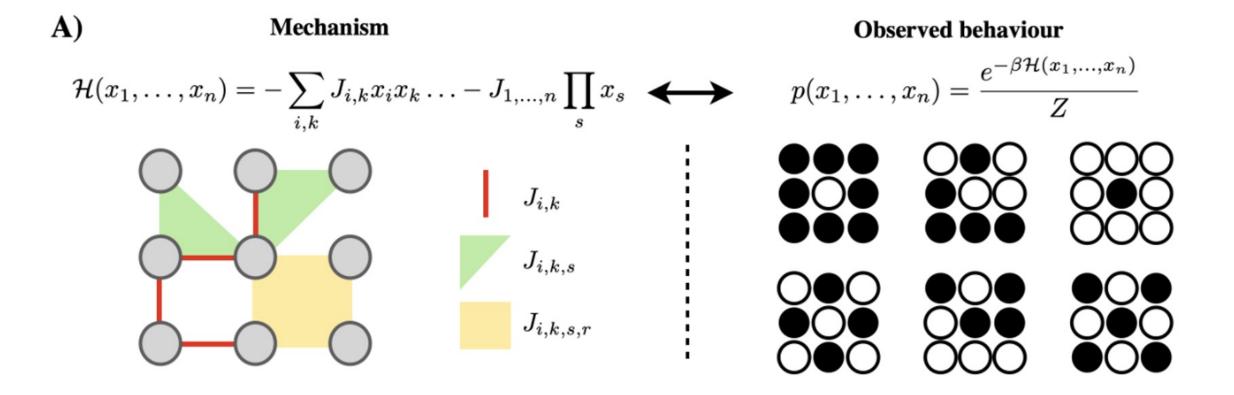
Federico Battiston¹[∞], Enrico Amico^{2,3}, Alain Barrat^{® 4,5}, Ginestra Bianconi^{® 6,7}, Guilherme Ferraz de Arruda[®]⁸, Benedetta Franceschiello^{® 9,10}, Iacopo Iacopini^{® 1}, Sonia Kéfi^{11,12}, Vito Latora^{® 6,13,14,15}, Yamir Moreno^{® 8,15,16,17}, Micah M. Murray^{® 9,10,18}, Tiago P. Peixoto^{1,19}, Francesco Vaccarino^{® 20} and Giovanni Petri^{® 8,21}[∞]

Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes, are therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the physics of higher-order systems.

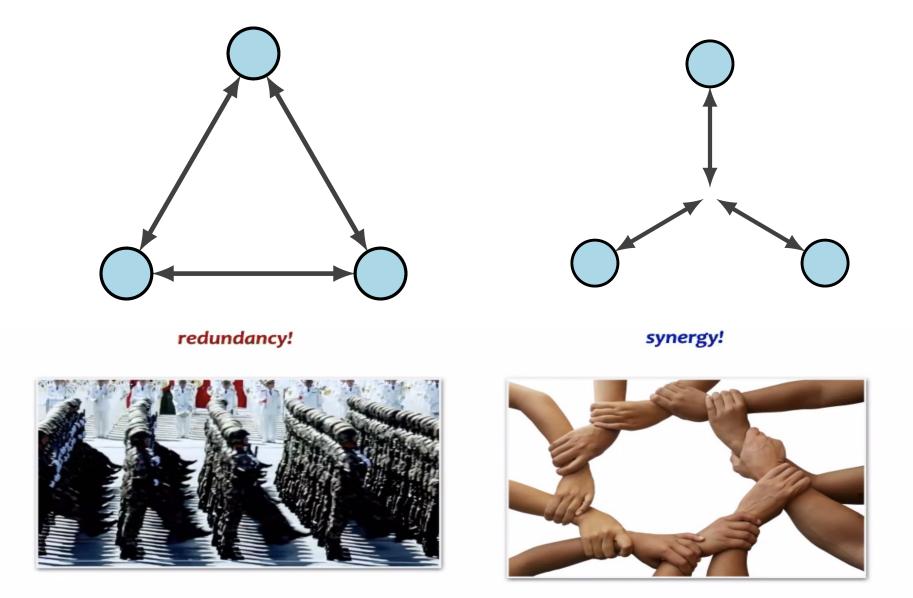
Correspondence Published: 21 March 2022

Disentangling high-order mechanisms and high-order behaviours in complex systems

<u>Fernando E. Rosas</u> ⊠, <u>Pedro A. M. Mediano</u> ⊠, <u>Andrea I. Luppi</u> ⊠, <u>Thomas F. Varley</u>, <u>Joseph T. Lizier</u>, <u>Sebastiano Stramaglia</u>, <u>Henrik J. Jensen</u> & <u>Daniele Marinazzo</u>


Nature Physics 18, 476–477 (2022) Cite this article

High Order Mechanisms -Structure -Interactions


High Order Behaviours-Function (correlations)-Observables (from data)

How the system is structured

What the system does

There are two basic types of high-order dependencies

Beyond triplets:

O-information: useful tool for practical data analysis, to assess the informational character of multiplets of variables

$$TC(\boldsymbol{X}^n) = \sum_{i=1}^n H(X_i) - H(\boldsymbol{X}^n) \qquad DTC(\boldsymbol{X}^n) = H(\boldsymbol{X}^n) - \sum_{i=1}^n H(X_i \mid \boldsymbol{X}_{-i}^n)$$

Total Correlation (Redundancy)

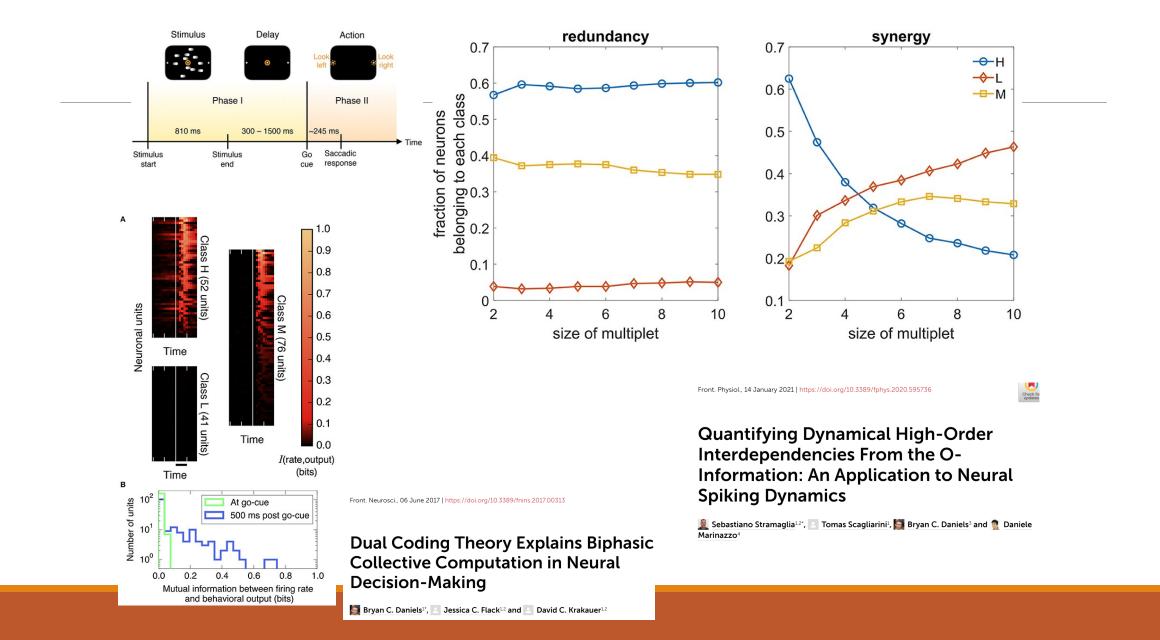
Dual Total Correlation (Synergy)

$$\Omega_n := \mathrm{TC}(\boldsymbol{X}^n) - \mathrm{DTC}(\boldsymbol{X}^n)$$

Captures the balance between Redundancy and Synergy

O-Information

on
$$\Omega_n = (n-2)H(X^n) + \sum_{j=1}^n [H(X_j) - H(X^n|X_j)]$$


 $\Omega_n > 0$ Redundancy

$$\Omega_n < 0$$
 Synergy

Quantifying high-order interdependencies via multivariate extensions of the mutual information

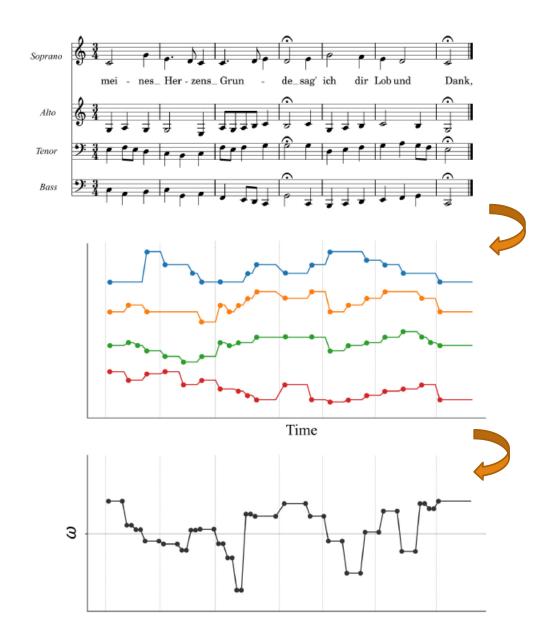
Fernando E. Rosas, Pedro A. M. Mediano, Michael Gastpar, and Henrik J. Jensen Phys. Rev. E **100**, 032305 – Published 13 September 2019

APPLICATION TO SPIKING NEURONS

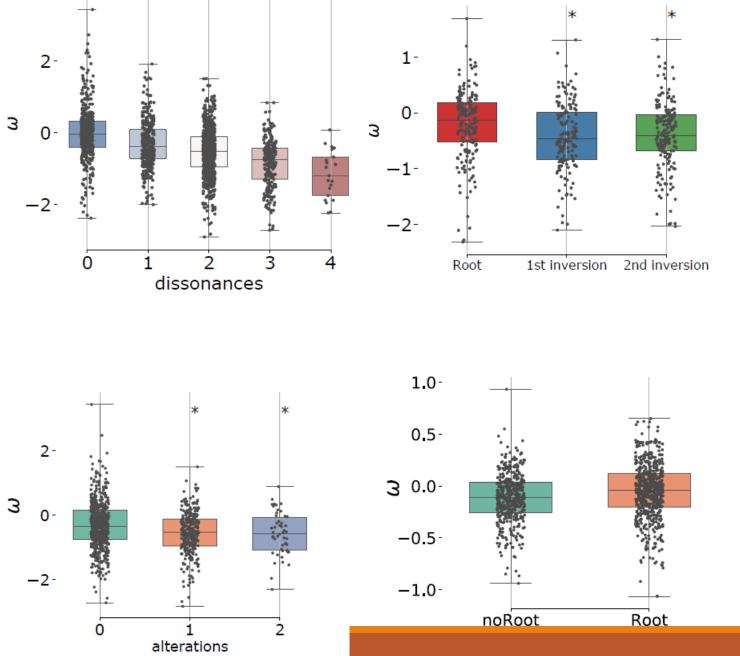
Quantifying high-order interdependencies on individual patterns via the local O-information

 $Entropy = -\int \log(p(x)) p(x) dx$ Local Entropy = - log(p(x)); surprise

Local O-information is obtained from the O-information substituting the entropy with the local entropy


Scagliarini et al.: Phys. Rev. Res.

J.S. Bach (1685-1750)


- 172 chorales
- $\sim 40 * 10^3$ 4-note chords

 $p(x_1, x_2, x_3, x_4)$

Redundancy		Synergy	
Chord	ω	Chord	ω
RRRR	3.443	AEDD	-2.916
GDGD	2.736	GBF#E	-2.836
F C F C	2.484	BFBB	-2.725
A C A C	2.311	AHEEA	-2.688
C G C C	2.23	G F# F# A	-2.613
$E \in E \in G$	2.228	GCBA	-2.581
C G C G	2.127	(F A [#] G F)	-2.559
A A E A	1.93	GCCA	-2.522
F D G D	1.921	$G \to C $	-2.432
D D A A	1.824	$\mathbf{G} \ \mathbf{G} \ \mathbf{G} \ \mathbf{G} \ \mathbf{C}$	-2.396
G D G G	1.782	$R \in R E$	-2.388
D D A D	1.748	G $F $ $G $ C	-2.311
D F C A	1.688	$A \sharp F G \sharp C$	-2.276
G G D G	1.674	$G \land F G$	-2.245
F F C F	1.594	E G A F	-2.238
$\mathbf{E} \mathbf{C} \mathbf{E} \mathbf{C}$	1.586	${ m E} \ { m F} \sharp \ { m C} \ { m D}$	-2.221
ACAD	1.544	$F \ddagger F \ddagger C \ddagger A$	-2.219
F F C D	1.532	G F F A♯	-2.185
R R R A	1.522	EAGD	-2.176
G F G D	1.512	C G G B	-2.173

O-information rate (L. Faes et al.): a framework which allows decomposing in frequency

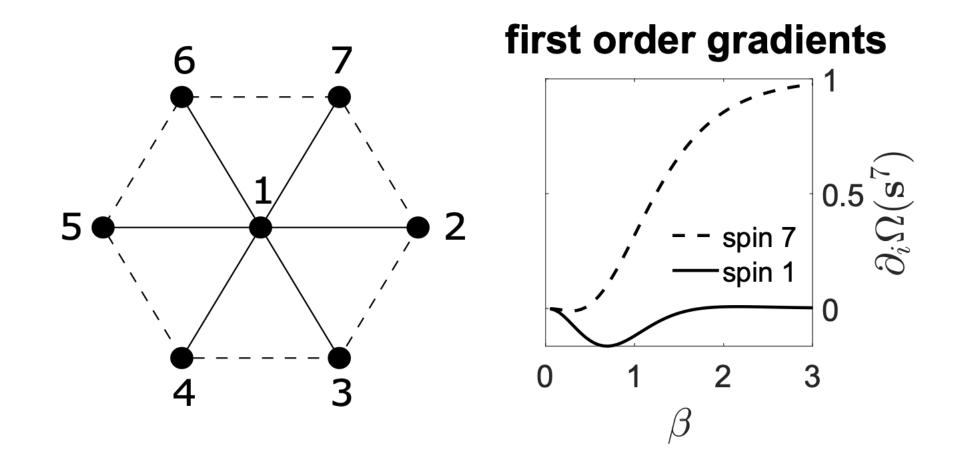
A Framework for the Time- and Frequency-Domain Assessment of High-Order Interactions in Brain and Physiological Networks

Luca Faes,¹,^{*} Gorana Mijatovic,² Yuri Antonacci,³ Riccardo Pernice,⁴ Chiara Barà,⁴ Laura Sparacino,⁴ Marco Sammartino,⁴ Alberto Porta,⁵ Daniele Marinazzo,⁶ and Sebastiano Stramaglia⁷

¹Department of Engineering, University of Palermo, Italy
 ²Faculty of Technical Sciences, University of Novi Sad, Serbia
 ³Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Italy
 ⁴Department of Engineering, University of Palermo, Italy
 ⁵Department of Biomedical Sciences for Health, University of Milano, Italy, and Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Italy
 ⁶Department of Data Analysis, University of Ghent, Belgium
 ⁷Department of Physics, University of Bari Aldo Moro, and INFN Sezione di Bari, Italy (Dated: February 10, 2022)

Gradients of O-information: low-order descriptors of high-order dependencies

$$\partial_i \Omega(\boldsymbol{X}^n) = \Omega(\boldsymbol{X}^n) - \Omega(\boldsymbol{X}^n_{-i})$$


$$\partial_j \partial_i \Omega(\mathbf{X}^n) = \partial_i \Omega(\mathbf{X}^n) - \partial_i \Omega(\mathbf{X}^n_{-j})$$

$$\partial_{ij}^2 \Omega(\boldsymbol{X}^n) = \left[\Omega(\boldsymbol{X}^n) - \Omega(\boldsymbol{X}_{-ij}^n) \right] \ - \left[\Omega(\boldsymbol{X}_{-i}^n) - \Omega(\boldsymbol{X}_{-ij}^n) \right] - \left[\Omega(\boldsymbol{X}_{-j}^n) - \Omega(\boldsymbol{X}_{-ij}^n) \right]$$

$$\partial_{\gamma}^{|\gamma|} \Omega(\mathbf{X}^n) = \sum_{\alpha \subseteq \gamma} (-1)^{|\alpha|} \Omega(\mathbf{X}^n_{-\alpha})$$

$$egin{aligned} \partial^3_{ijk}\Omega(oldsymbol{X}^n) &= \Omega(oldsymbol{X}^n) - \Omega(oldsymbol{X}^n_{-i}) - \Omega(oldsymbol{X}^n_{-j}) - \Omega(oldsymbol{X}^n_{-k}) \ &+ \Omega(oldsymbol{X}^n_{-ij}) + \Omega(oldsymbol{X}^n_{-ik}) + \Omega(oldsymbol{X}^n_{-jk}) - \Omega(oldsymbol{X}^n_{-ijk}) \end{aligned}$$

Toy model: Ising spins

As an econometric			
application, 14 US			
macroeconomic time			
series taken from the			
Federal Reserve			
Economic Dataset			
over a period of 61			
years (1959- 2020)			

US macroeconomics indicators	$\partial_i \Omega$
COE	0.59
HOANBS	0.47
GDPDEF	0.33
UNRATE	0.27
FEDFUNDS	0.15
TB3MS	0.11
M2SL	0.09
GPDI	-0.26

TABLE I: Gradients of O-information for US macroeconomic indicators (only statistically significant values).

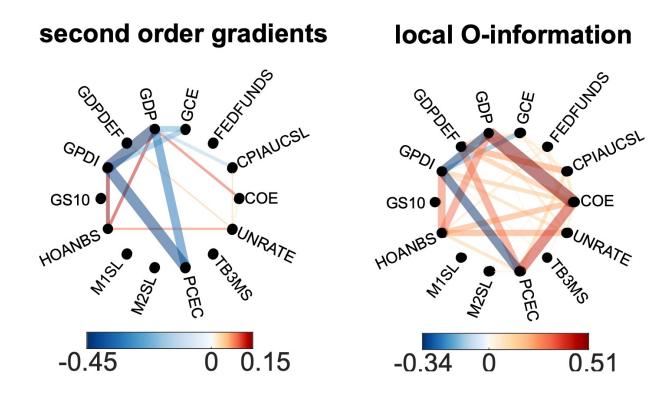
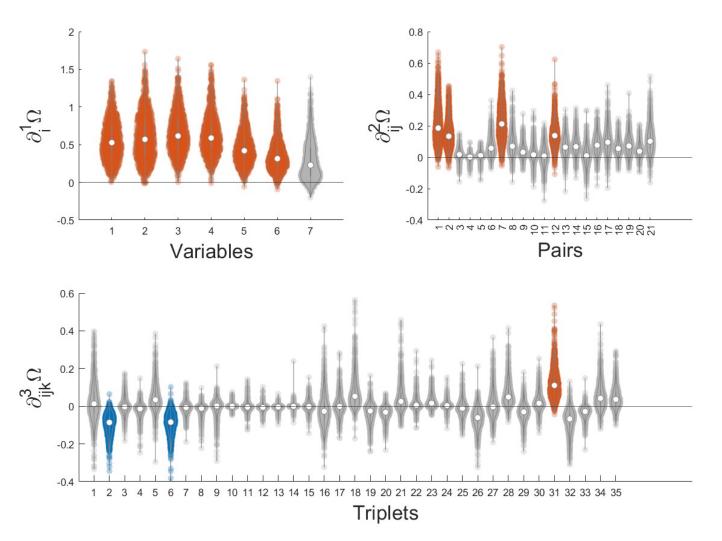



FIG. 2: Left: second order gradients for pairs of economic indicators. Right: local O-information of pairs of economic indicators. Edge values are encoded by color (sign) and width (absolute value). Only statistically significant edges — calculated via bootstrap resampling — are included.

Application to fMRI data

- 7 series obtained from 100 series averaged over the seven intrinsic connectivity network [1]
- 1083 healthy subjects

Two synergetic triplets at order 3: {1,2,4} {1,3,4}

[1] Yeo, B. T.; Krienen, F. M.; Sepulcre, J.; Sabuncu, M. R.; Lashkari, D.; Hollinshead, M.; Roffman, J. L.; Smoller, J. W.; Zöllei, L.; Polimeni, J. R. The Organization of the Human Cerebral Cortex Estimated by Intrinsic Functional Connectivity. *Journal of neurophysiology* 2011.

Conclusions

These new tools make possible the analysis of many body effects in complex systems with a computational burden which scales gracefully with the number of variables. The search for synergistic informational circuits can thus be acomplished also in the big data scenario.

Thanks to:

- Tomas Scagliarini, Davide Nuzzi (Bari U)
- Daniele Marinazzo (Ghent U)
- Fernando Rosas (Imperial College London)
- Yuri Antonacci, Luca Faes, Rosario Mantegna (Palermo U)
- Alberto Porta (Milano U)
- Gorana Mijatovic (Novi Sad U. Serbia)
- Bryan Daniels (Arizona State U)