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Summary

1) High Order Mechanisms vs High Order Behaviors
2) Partial Information Decomposition: synergy and redundancy

3) Applications

4) Conclusions




Complex Networks
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Network Physiology, Network Neuroscience, Network Psychiatry, etc...




Functional Segregation vs Functional Integration
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The physics of higher-order interactions in
complex systems
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Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are
intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order
interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes,
are therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight
recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the phys-
ics of higher-order systems.



a Network b Hypergraph c Simplicial complex

Fig. 1| Pairwise and higher-order representations. a, Systems comprising many interacting units have long been represented as networks, with
interactions restricted to pairs of nodes and represented as edges. However, it is not always possible to describe group interactions as sums of pairwise
interactions only. b, Representations allowing for genuine group interactions include hypergraphs, which can encode interactions among an arbitrary
number of units without further constraints. Here, shaded groups of nodes represent hyperedges. ¢, Simplicial complexes offer another approach.
Although more constrained than hypergraphs, they provide access to powerful mathematical formalisms™'. Edges (1-simplices) are shown here in black,
full triangles (2-simplices) in yellow. Note that, in simplicial complexes, all subfaces of a simplex (for example, the edges of a triangle) need to be included.
This constraint does not hold for hypergraphs.
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Fig. 2 | Higher-order interactions lead to explosive phenomena. Edges and hyperedges encode pairwise and group-level couplings among the nodes of

a complex system. a, Hyperedges modulate group infection and many-body feedback in higher-order processes of contagion. Susceptible nodes (S, blue)
can be infected by infectious ones (I, orange) in the usual way along edges, but also by groups containing a large fraction of infected nodes (for example,
orange 2-simplices). b, Hyperedges have a similar effect on higher-order processes of synchronization, in which oscillators on nodes can be coupled along
edges, or in groups via higher-order interactions (HOIs). €, Abrupt transitions emerge when increasing the strength of such interactions, suggesting a
general pathway to explosive phenomena.
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High Order Mechanisms
-Structure
-Interactions

How the system is structured

I_

igh Order Behaviours

~unction (correlations)

-Observables (from data)

What the system does



A) Mechanism Observed behaviour
e - B H ( L]geeey Tn )

P(Z1y ey Bn) =

7
000
008 833
000

000
000

o, o 888

" o,
—~~
8
s
~ |
p—

Il
|
=M
~
=

8

8
=

|
~
i

Q

v,

Q@ 0.0
O Jik,s
O Ji k8,7

~
-

[ O]
Oe0O




There are two basic types of high-order dependencies

o~ o

redundancy! synergy!




e Synergy is the coexistence of differentiation (weak low-order
relationships) and integration (strong collective properties).

Basis of consciousness in the brain (Tononi 2004)




In the 2D Ising model
one observes nontrivial
high order
dependencies although
mechanisms are
pairwise
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I | I te ra Ct | O I l S Social stability is often associated with triangular interactions between people. Various

possible social triangles appear in peculiar ratios. The triangles “The friend of my friend is
my friend” and “The enemy of my friend is my enemy” are strongly overrepresented, which
plays an important role for social balance. A standard explanation for these characteristic
triangle fractions is that people consider triadic information before forming social relations.
This assumption often contradicts everyday experience. We propose an explanation of the
observed overrepresentations without individuals having to consider triangles. A society
where individuals minimize their social stress self-organizes toward the empirically
observed triangular structures. We demonstrate this with data from a society of computer

game players, where triangle formation can be directly observed.
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Mutual Information

Relative entropy between the joint distribution and the product distribution

I(X;Y)=D(p(x,y) | p(x)p(y))

I(X;Y)= ) log P Y)
=22 Pt 0t0e 00

Reduction in the uncertainty of X due to the knowledge of Y

I(X;Y)=H(Y)-H(Y |X)=
H(X)+HY)-H(X,Y)



Transfer Entropy

X and Y two (vectorial) time series

X, the future values of X



If Y does not provide information
about the future of x:
Generalized Markov property

Px| X)=P(x| X,Y)

P(x| X,Y)
P(x| X)

T(Y > X) = j P(x, X,Y) log( jddedY

Transfer Entropy =I(x,Y | X)



INFORMATION DYNAMICS AT TRANSITIONS

Information transfer is minimized both in the completely
ordered and in the disordered state
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Kuramoto oscillators on a lattice (Heyvaert 2018)



EXAMPLE OF TRANSITIONS : ISING MODEL
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ISING MODEL: BEYOND FERROMAGNETISM

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

...............

Polarization of news and opinions, financial crashes,
epileptic seizures, learning, etc



INFORMATION DYNAMICS AT TRANSITIONS

0.3

Pairwise and global Mutual
Information peak at the
critical temperature (Matsuda
et al. IJTP 1996).
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Synergy as a warning sign of transitions



DECOMPOSITION FOR MUTUAL INFORMATION

AND TRANSFER ENTROPY
Not conditioning on the past (instantaneous)

I (Si; {Sjsk}) . Uf—m’ T Ulg—m' T le—m T Sgk—m’a
I (S’M ) UjI—m + Rjk—)’t’
I (S’i; Sk) — Uk—)i R§k—>i'

Conditioning on the past (lagged)
T
Tjk—m e U]—)Z + Ukz—)z + R]k‘—)’& T S]k—)’b’
T
TJ—>’L . Uj—)’b T Rjk—)’b’
Ti—i = Uiy + Rip_ss.



INFORMATION DYNAMICS AT TRANSITIONS

instantaneous lagged
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the paramagnetic phase

The synergy peak approaches
the critical value as the
amount of synergy decreases
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NOW ON THE HUMAN STRUCTURAL CONNECTOME

DTI of 196 subjects, age range 5-85 vy

does the synergy still peak before
the critical point in a nonuniform
network?

are the hubs of structural
connectivity also hubs of synergy?

is there association with age?



NOW ON THE HUMAN STRUCTURAL CONNECTOME

Hubs of structural connectivity are not among the nodes towards
which synergy is highest
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Fig 5. Comparing synergy with topological indices. From the left to the right, for each brain
node the incoming synergy at criticality is compared with the strength of nodes, the betweenness and the
closeness.

Fig 6. Hubs of synergy. Top nodes for the value of incoming synergy, radius and color of the spheres
are arbitrary:

'Right Hippocampus’, 'Brain Stem’, 'Right Parahippocampal posterior’ "Left Parahippocampal posterior’,
'Right Cingulate posterior’, 'Right Precentral’, "Left Thalamus’, "Left Parahippocampal posterior’, 'Left
Hippocampus’, 'Right Lingual’, 'Right Caudate’, 'Right Cingulate anterior’



NOW ON THE HUMAN STRUCTURAL CONNECTOME

Positive and negative
associations of synergy
with age, in localized
clusters

In some regions this
association is

continuous with age,
in other ones it's

10 20 30 a0 50 60 70 80 10 20 30 40 50 60 70 80
limited to the first . A
Fig 8. Scatter plot of synergy and age for two representative brain regions.
~ 3 O yea rs Left: Right Superior Temporal posterior, positive correlation.

Right: Right Frontal pole, negative correlation.
Local average and standard deviation are evaluated using the first 20 neighbours of each point.



BRAIN SIGNALS: EPILEPSY

Hippocampus ‘(‘;'_
Amygdala —/
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64 CORTICAL ELECTRODES AS TARGET, AND TWO DEPTH HIPPOCAMPAL
ELECTRODES (11 AND 12, BOTH CANDIDATES AS EPILEPSY FOCI) AS DRIVERS

[M. Kramer et al., Epilepsy Research 79, 173-186, 2008]



BRAIN SIGNALS: EPILEPSY
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SYNERGY AND REDUNDANCY

HAVE A HIERARCHICAL STRUCTURE

Regions forming redundant and synergetic multiplets with a
representative region (black)
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Hierarchical structure of synergy and redundancy networks

Resting state fMRI, Human Connectome Project



CHALLENGE:

 We have HOI mechanisms on one side, we have higher-order
observables on the other side; what we sorely miss are inferential
techniques to connect the two, and to be able to perform "higher-
order mechanism selection" constrained by the observed behaviours
over classes of higher-order mechanisms.
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