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Motivation
e We need these characteristics for modelling

oscillatory networks

*We need the phase and amplitude response to
optimise control of oscillatory dynamics



Analysis of oscillatory systems

e Active analysis vs. passive analysis

e Model-based analysis vs. non-model-based one



Analysis of oscillatory systems

e Active analysis vs. passive analysis

~ Passive analysis: we observe the system under
free-running conditions

~ Active analysis: we perturb the system by a
specially designed perturbation and look for the
response



Analysis of oscillatory systems

e Model-based analysis vs. non-model-based one

~ Non-model-based: no assumption about the
origin of the signal
(an example: spectral analysis)

~ Model-based: the validity of the technique
crucially depends on the assumption about the
system under investigation
(an example: coupling function reconstruction
assumes that the signals come from interacting
self-sustained oscillators)



Analysis of oscillatory systems

e Active analysis vs. passive analysis

e Model-based analysis vs. non-model-based one

We present an active analysis technique based
on the model of self-sustained oscillators



Self-sustained oscillators

Active oscillators

Biology: systems generating endogenous rhythms

Systems of this class:

1 | generate stationary oscillations without periodic forces

2 | are dissipative nonlinear systems

3 | are described by autonomous differential
equations

4 | are represented by a limit cycle
in the phase space




Selt-sustained oscillator: limit cycle and phase

L1
Stable limit cycle: an attractive

closed curve in the phase space

Phase 1s a variable that describes
the motion along the limit cycle

Phase is defined to obey the condition P = = 27l T

and can be introduced:

1. on the limit cycle

2. 1n the basin of attraction of the limit cycle



Phase dynamics: the phase sensitivity function

0(7 Suppose the oscillator 1s driven by
weak perturbation p(?)
Then | @ = ® + Z(@)p(?)

Phase Sensitivity function, or
Phase Response Curve (PRC)

Phase dynamics equation in the Winfree form

® PRC is a basic characteristic of a limit-cycle oscillator

® PRC description 1s widely used, e.g. 1n neuroscience



Phase response curve: examples
PRC quantifies response (phase shift) of an oscillator to a perturbation

Example: human circadian cycle

Advance Zone

 Delay region: evening light shifts
sleepiness later and

« Advance region: morning light
shifts sleepiness earlier.

(Wikipedia; Kripke & Loving, 2001)
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PRC determination

Traditional approach to PRC ‘ T l O |
determination: repeated I
stimulation of an 1solated | '
oscillator by short pulses T ‘
(Picture from Scholarpedia) ok 5 \
ls
|- P = 27"?
- 9 9 1
o — 41
Z — 27
(¥) T

This works well with neuronal system that are well-described by
integrate-and-fire models
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PRC determination 11

Generally, one has to follow several periods after the kick

1 p = 2T —
3 9 9 I
nTy —> . T
Z(p) = 2n "0 2=

(PRC 1s typically normalized by the amplitude of the kick)
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PRC determination: problems

e The standard approach requires narrow pulses that
reasonably approximate Dirac’s delta function;
however, in biological applications, the pulses frequently
must be charge-balanced

blue area=
Pulse L(t — 1) - .

o
We denote theoretical PRC (response to Dirac’s delta) as Z(¢)

We denote effective PRC (response to arbitrary &) as Zg(@)

ﬁ e need a technique for re-computation Z,(¢) — Z(¢)
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PRC determination: problems

e The standard approach requires narrow pulses that
reasonably approximate Dirac’s delta function;
however, in biological applications, the pulses frequently
must be charge-balanced

blue area=
Pulse L(t — 1) - .

o
We denote theoretical PRC (response to Dirac’s delta) as Z(¢)

We denote effective PRC (response to arbitrary &) as Zg(@)

ﬁ e need a technique for re-computation Z,(¢) — Z(¢)

... and we provide it!
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PRC determination: problems II

e The standard approach works well 1f the signal has
well-defined marker events that can be assigned a
specific phase value

Filtered tremor data from B. Duchet et al.

env: c!

bo

-

filtered signal (a.u.)

I
Do

. e need a technique for arbitrary

stimulation’s and signal’s shape
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PRC determination: problems II

ol env. ¢! B. Duchet et al, J. Ma}? Neurosci. 10, 4 (2020)

A

Stimulation by bursts of pulses

Amplitude changes due to stimulation

s Weakly stable limit cycle
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PRC determination: problems II

e The standard approach works well 1f the signal has
well-defined marker events that can be assigned a
specific phase value

Filtered tremor data from B. Duchet et al.

env: c!

bo

-

filtered signal (a.u.)

I
Do

. e need a technique for arbitrary

stimulation’s and signal’s shape
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PRC determination in the context of
Deep Brain Stimulation (DBS)

eFitting sine-wave before and after the stimulus

A. Holt and T. Netoff, J Comput Neurosci 37, 505 (2014)
A. Holt et al, PLoS Comput. Biol. 12, e1005011 (2016)

eUsing Hilbert Transform (HT) to evaluate phase
(and amplitude) variation due to the pulse

ret
2 iV -

0+ A

of

B. Duchet et al, J.]Math. Neurosci. 10, 4 (2020)

Both techniques have never been tested on models with known PRC

s LWe need test models
ﬁ

e need a measure of goodness of the PRC determination
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Amplitude response - an unexplored problem

* [rrelevant for neuron-like systems (relaxational oscillators,
strongly stable limit cycle); no effect of sitmulation on the
amplitude

e Highly relevant in the context of DBS, where the goal of the
stimulation 1s to suppress the oscillation, 1.e., to affect the
amplitude. This 1s possible for a weakly stable cycle only.

e The main problem 1s the amplitude’s definition

e Ad hoc approach (B. Duchet et al.): to compute the amplitude

response curve as A(Q) = Ayper puise! Wpefore puise» Where a(?) 1s

the instantaneous amplitude obtained via HT
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Tests of known techniques: Hilbert-based

Hilbert transform 1s non-local, 1t 1s known to work poorly
with pulse perturbation, here 1s the test for the SL system

150 155 160 165 170 175
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Tests of known techniques: Hilbert-based

——> «— pulse

true amplitude HT amplitude
(a) =
§ 0.25 ’ :
- AN
L 0.2 N
= \ | signal

150 155 160 165 170 175
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Tests of known techniques: Hilbert-based

@) 5
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Hilbert-based technique: summary

- the results depend on the observable (not shown)

- works only with nearly harmonic signals

- can be improved (not shown), but remains 1mprecise
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Tests of known techniques: sine-fitting

| | | | | |
J—

3 n ° 3T0‘ L
. er, ~fitover3
o T, | periods /#
theory B

~

theory for
SL system

- works only with nearly harmonic signals

- 1S 1Imprecise - requires long time series
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Phase - isostable variable representation

For an autonomous 2-dimensional system:

¢=w, Y=Ky
Floquet exponent/‘ N Isostable variable

Y quantifies deviation from the limit cycle

For a perturbed system (1st approximation!):

»=w+Zp)pl), y=«xy+Ip)pQ)

/

The description applies to multidimensional systems 1f
relaxation in one direction 1s much slower than in others

Isostable response curve (IRC)

For details, see Wilson and Moehlis, PRE 94, 052213 (2016)
Wilson and Ermentrout, SIAM J on Appl Dyn Sys 17, 2516 (2018)
Wilson, PRE 99, 022210 (2019)
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Phase - isostable variable representation

For an autonomous 2-dimensional system:

¢=w, Y=Ky
Floquet exponent/‘ N Isostable variable

Y quantifies deviation from the limit cycle

For a perturbed system (1st approximation!):

»=w+Zp)pl), y=«xy+Ip)pQ)

/

We present an algorithm for inferring these equations
from an observation of the perturbed system

Isostable response curve (IRC)
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Computing PRC from a known input

We adapt our approach from
Rok Cestnik & M. R. Sci1 Rep 8, 13606, 2018

We perturb the oscillator by the pulse train p(7) = Z P(t— 1)
k

We define events via thresholding, e.g., x(¥) = x,,,..cpo705 X > O

tm—l tm T tm—l—l tm—|—2
NOtathIlS Msooo0000c m ....... > time
A A ’
p =20 Y = 27

The choice of the threshold can be optimised
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Computing PRC from a known input

tm_]_ tm T tm—|—1 tm—l—2
NOtathIlS Msco00000c m ....... > fime
A A
=0 QY = 27

Winfree model ¢ = w + Z(p)p(t)

/02" 4= /t;m+Tm (w + Z(p)p(t)]dt

Substituting PRC as a finite Fourier series,
Z(p) = a0 + Y p—y [an cos(ng) + by, sin(ne)]

we obtain m equations:

tm+Tm [ twt+ T tm+Tm

27 = &T), +ag / p(t)dt—l—; 2 / p(t) cos[no(1)]dt + b, / p(¢) sinno()]dt

tm | tm
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Computing PRC from a known input

tm+1Tm

N
27 = @T+ / p(t)di+Y
Eq.(x) fm n=1

tm~+Tm

a | p(t)cosing(r)

Im

tm+Tm
d + b, / p(t) sin[ne(1)]ds
Im

We solve the problem by iterations: first we take

PO (t) = 27(t — tim)/Ton € [ty tm + T
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Computing PRC from a known input

tm+1Tm

N
27 = @T+ / p(t)di+Y
Eq.(x) fm n=1

tm~+Tm

a | p(t)cosing(r)

Im

tm+Tm
d + b, / p(t) sin[ne(1)]ds
Im

We solve the problem by iterations: first we take

iteration

_goj(‘” (t) = 27 (t — t) /T € [tms tom + Ton]
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Computing PRC from a known input

tm+1Tm

N
27 = @T+ / p(t)di+Y
Eq.(x) fm n=1

tm~+Tm

a | p(t)cosing(r)

Im

tm+Tm
d + b, / p(t) sin[ne(1)]ds
Im

We solve the problem by iterations: first we take

iteration

_géﬂ) (t) = 27 (t — t) /T € [tms tom + Ton]

substitute into Eq.(x), compute numerically all integrals

system of M linear equations for 2N+2 coefficients

for M>2N+2 we solve the system using l.m.s. optimisation

¥

first approximation for frequency and PRC w® A (1)




Next approximation for the phase

We integrate numerically ¢ = w1 4 Z(1) (90(0) (t)) p(t)
for each inter-spike interval with initial condition e (t.,,) =0

It 1s, for 0 < 7 < T;,, we compute

ton+7
PN (tm + 1) = w7 + / z™ (90(0) (t)) p(t)dt
tm
Since everything 1s approximate, generally

oM (tm + Tin) = ¥l # 2m
Therefore we rescale the phase: ') (t) — 2wpM) (t)/w,bg)

Quantities gbfr’f ) will be used to monitor convergence of 1terations
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Second iteration

tm+1Tm N tm+Tm tm+Tm
27 = &T) +ag / p(dt+ Y |a, / p(t) cos[ne(1)]dt + b, / p(t) sin[ne(1)]ds
Eq.(*) Im =1 | Im Im

We obtained 90(1) (1)

substitute into Eq.(x), compute numerically all integrals

system of M linear equations for 2N+2 coefficients

for M>2N+2 we solve the system using 1.m.s. optimisation

¥

second approximation for frequency and PRC w2 A (2)
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Second and further iterations

tm~+Tn, C ty+ Ty tm+Tom

N
27 = &T) +ag / p(dt+ Y |a, / p(t) cos[ne(1)]dt + b, / p(t) sin[ne(1)]ds
Eq.(*) fm = g hn

We obtained 90(1) (1)
substitute into Eq.(x), compute numerically all integrals

system of M linear equations for 2N+2 coefficients

for M>2N+2 we solve the system using l.m.s. optimisation

¥

second approximation for frequency and PRC w2 A (2)

¥

w®) | Z®) g (®)
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Monitoring convergence

Recall:
ton+T1
PN (tm + 1) = wP7r 4 / AR (90(0) (t)) p(t)dt
tm

Since everything 1s approximate, generally
PV (tm + Tr) = L) # 27

and similarly for further iterations, ) ,g:”)

We introduce the average error Ay = {((V,, — 2m)2)1/?

to be compared with

Ay, = (({(W) T — 27)%) /2 where (w) = (27/T),)

(error of trivial prediction with average period)
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Quality of the PRC estimation

We introduce the average error Ay, = ((V,, — 27)2)1/2

to be compared with

Ay, = ({0, — 27)2)Y2 where (w) = (27 /T,)
(error of trivial prediction with average period)

The measure £ = A /A, quantifies the quality of the estimation

This measure can and shall be used with any inference technique!
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Inferring 1st-order phase-isostable dynamics
(IPID-1 technique)

First, we infer PRC; this also yields ¢(%).
From ¢(7) we obtain time events 7; of equal phase, ¢(z;) = const

For a noise-free unperturbed system, the observed signal
would be s(z;) = const = s,

For the perturbed system, we write in the 1st order:

w; = cp(t) —so) (%)

Generally, ¢ = c(@) , sp = so(@). However, at points z; phase
1s the same. Hence, ¢ and s, in Eq. (*) are constants.

Additionally, y 1s defined up to a constant factor = ¢ =1
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IPID-1 technique
We 1ntegrate the 1sostable dynamics v = xy + I(@)p(?)

I(p)p(t) dt

Ti41

Ti4+1
¢i+1—¢z‘=/€/ w(t)d’H’/
Using y; = c(y(7;) — 5y), we write the Lh.s. as s(z;, ) — s(7))

Substituting /(@) as a finite Fourier series, we obtain a linear

Tit1
system, but we have to compute the integral KJ w(1)dt
T

l

We write 1t as

Ii/' . w(t) dt = _RSO(Ti+1 — TZ') + li/. . (w(t) + 8()) dt
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IPID-1 technique 11

We write 1t as

. / T B At = —rso(Tiey — 7)) + R / () + so) dt
T T N~

this function 1s known in endpoints:
w(z;) + 59 = s(z;)
W(Tip1) + 5o = 5(7;41)

becomes another
variable for the
linear system

we approximate [, (¥(t) + so)dt = [s(7) + s(Ti41)]/2

¥

we solve the linear system and obtain the 1st-approximation
stV kM 1 ()
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IPID-1 technique 111

¥

we solve the linear system and obtain the 1st-approximation

¥

again, we use 1terations to obtain next approximations

starting with S(gm) kU [0(g), we compute
t
M (1) = s(r;) — si™ + / (M) (1) £ 1) ()p(#)] dt!

/\/
v

l//(m)(fi)
and solve the linear system to obtain sém“) D D)
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Monitoring the inference’s error

starting with S(gm) kU [0 (), we compute

(1) = s(r;) — s™ + / RO () 4 100 (@)p(e)]
/\/ Ti

l//(m)(fi)

Our model is not exact, hence ¥i™ = lim p™(t) # s(ris1) — 5™

741

We define the error as  E{™ = (W™ — (s(i41) — sy™))?)1/?

and compare 1t with the signal’s variability at events

Ero = ((s(73) — <S(7’z->)2>1/2
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Results for test models with known Z(¢), [(¢p)

Y x I(p)
0.2 - 0.2 - f ” n n I true
5 -

0.1- 0.1

0.0 - 0.0 *. l - 0-
—0.11 —0.11 .
~0.21 @| 024 U | V Vel

02 00 0.2 0 20 0 r o 0 r o

| VUV Va 1 (i
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Results for test models with known Z(¢), [(¢p)

We constructed test moc

C

These models generate ¢

1

()

()l -1 (i) 1

Is with known Z(¢p) and I(¢)

ferent wavetorms

I
2

43



Results for test models with known Z(¢), [(¢p)

Y x I(p)
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Further results for the IPID-1 technique

It 1s most reliable technique in the presence of noise

It performs better for a high-dimensional chaotic system

(ensemble of globally-coupled Bonhoetfer -van der Pol

systems with ¢

haotic mean field)

1 ) |
<
0
- ‘ | I " A i
1 | w LA UJ
0 5000
time

observable of the unperturbed system
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Further results for the IPID-1 technique

It performs better for a high-dimensional chaotic system

[PID-1 std. sine fit Hilbert

error of PRC inference
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Further results for the IPID-1 technique
It yields better envelope than the Hilbert Transform

1.01
0.5
0.0
S
—0.5
- p
;N —— )+const.
----------- Hilbert ampl.
—1.5
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Further results for the IPID-1 technique

It yields better envelope than the Hilbert Transtform
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Conclusions

Reconstruction of the phase - 1sostable dynamics
- 1s independent of the observable

- robust against noise

- requires shorter time series

Inference of the PRC for arbitrary pulse shape
Test models with known ground truth
Estimation of the inference error from data

Rok Cestnik,E. Mau, M. Rosenblum, arXiv:2206.09173 (June 2022)
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