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A description of the 
Kingdom of Siam, 1690

 Fireflies “hide their Lights all at 
once, and a moment after make it 
appear again with the utmost 
regularity and exactness.”

Fireflies synchrony

Engelbert Kaempfer 
(16.09.1651, Lemgo, Germany - 2.11.1716)
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Cybernetics: or the Control and 
Communication in the Animal 
and the Machine, 1961

Fireflies synchrony II

Norbert Wiener

 Hypothesis: same “phenomenon of
the pulling together of frequencies” 
is responsible for emergence of the 
brain waves
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Metronomes on a moveable support
Idea: B. Daniels, Diploma thesis, Ohio Wesleyan University



Highly interconnected oscillator networks
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Typical assumption: all-to-all (global) coupling; each unit                         
equally interacts with all other units

Different mechanisms:

Main effect: emergence of a collective mode (mean field)

• Kuramoto scenario

• Van Vreeswijk scenario

• Quasiperiodic partial synchrony



N all-to-all coupled oscillators: The Kuramoto model

Yoshiki Kuramoto, 1975, 1984
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Kuramoto scenario
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R

Critical coupling
R ⇠
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Order parameter 
(mean field 
amplitude)

Qualitatively similar results for ensembles of periodic 
or weakly chaotic oscillators

Qualitatively similar results for ensembles of 
excitatory and inhibitory model neutrons

Main result for a unimodal frequency distribution



Highly interconnected neuronal network 
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Global coupling is a reasonable model of 
collective neuronal dynamics
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Kuramoto scenario
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Emergence of a cluster of units synchronized 
mutually and with the mean field

Experiments with electronic Wien-bridge oscillators

Coupling



Van Vreeswijk scenario
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The model: coupled integrate-and-fire neurons

Coupling via an  function:α



Van Vreeswijk model
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• There is no synchronous solution 

• There is either the asynchronous state or partial synchrony 

• Partial synchrony:  
mean field is periodic, individual units are quasiperiodic;  
average firing frequency of a unit  mean-field frequency≠



Self-organized quasiperiodic dynamics
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• Transition from synchronous periodic state to 
partially synchronous quasiperiodic state (SOQ)

• SOQ: average frequency of units  mean-field frequency≠

• Nonlinear coupling



Self-organized quasiperiodic dynamics
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Experiments with electronic Wien-bridge oscillators

Coupling
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Neuroscience, Deep Brain Stimulation (DBS): 
- high-frequency electrical stimulation of a motor-
control brain region via implanted microelectrodes 
- approved by FDA as a treatment for Parkinson’s 
disease and essential tremor since 1997 

- also approved for dystonia (2003), obsessive-compulsive 
disorder (2009), and epilepsy (2018) (Wikipedia) 

Mechanisms of DBS are still a matter of debate 

Standard DBS: stimulation with a constant frequency  Hz ∼ 120 ÷ 130

Current research: adaptive DBS, also feedback-based 

Why to control collective synchrony?
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Working hypothesis
Pathological brain rhythm emerges due to an excessive 
synchrony in a neuronal network

DBS shall be considered as a desynchronization problem

Formulated by Peter Tass

Many approaches: open-loop and closed-loop techniques 
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Closed-loop control (in silico only!)

Assumption: we can measure the collective activity (mean field) 
and stimulate the whole ensemble (or its large part)
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·xk = fk(xk, yk) + εX
·yk = gk(xk, yk)

measured X amplifier delay/
phase shift

mean field X = N−1 ∑
k

xk

mean-field coupling

Closed-loop control: a simple explanation
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Closed-loop control: a simple explanation

·xk = fk(xk, yk) + εX
·yk = gk(xk, yk)

measured X amplifier delay/
phase shift

enhancement of synchrony!
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Closed-loop control: a simple explanation

·xk = fk(xk, yk) + εX
·yk = gk(xk, yk)

measured X amplifier delay/
phase shift

suppression of synchrony!
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Closed-loop control: a simple explanation

·xk = fk(xk, yk) + εX
·yk = gk(xk, yk)

measured X amplifier delay/
phase shift

suppression of synchrony!
The problem: we have to find appropriate amplification 

and proper phase shift without any knowledge of the system
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Solution of the problem: adaptive control
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Solution of the problem: adaptive control
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- continuous stimulations is not feasible 

we need a pulsatile-stimulation scheme

- pulses must be charge-balanced! 

blue area=yellow area

Neuroscience application: requirements
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Pulsatile stimulation: a solution

from a continuous feedback scheme

The problem: contemporary 
DBS equipment cannot alter 
pulse amplitude so fast
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Stimulation by rare pulses: the idea
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unstable fixed point

limit cycle

We want to push the state space point off the limit cycle
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Stimulation by rare pulses: the idea
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We want to push the state space point off the limit cycle

The pulses act along some a priori unknown direction!
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Stimulation by rare pulses: the idea
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We want to push the state space point off the limit cycle

There are two favourable phases - let us stimulate only twice per period!

We have to determine phase on the fly
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Two models
1

·xk = xk − x3
k /3 − yk + Ik + εX + cos ψ ⋅ P(t)

Bonhoeffer-van der Pol oscillators, global coupling

·yk = 0.1(xk − 0.8yk + 0.7) + sin ψ ⋅ P(t)

2 Rössler oscillators, global coupling

Parameters  have Gaussian distribution with Ik Īk = 0.6 , std(Ik) = 0.1
Parameter  determines how the pulses act on the systemψ

·xk = − ωkyk − zk + εX + cos ψ ⋅ P(t)
·yk = ωkxk + 0.15yk + sin ψ ⋅ P(t)
·zk = 0.4 + zk(xk − 8.5)

Parameters  have Gaussian distribution with ωk ω̄k = 1 , std(ωk) = 0.02
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Phase determination
We follow

and introduce a “device” (harmonic oscillator + integrating unit):
··u + α ·u + ω2

0u = X(t)
μ ·d + d = ·u  average frequency of ω0 ≈ X(t)

Auxiliary variables  and  have zero mean, 
amplitudes close to that of , and phases shifted by  and 

̂x = α ·u ̂y = αω0μd
X 0 π/2

We obtain phase as   θ = arctan( ̂y/ ̂x)

We obtain instantaneous amplitude as  ain = ̂x2 + ̂y2
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Phase determination: how it works for model 1

0 50 100 150 200 250
t

-2

0

2

θ,
Θ

Θ = arctan
Y − Y0

X − X0
θ = arctan

̂y
̂x

X = N−1 ∑
k

xk , Y = N−1 ∑
k

yk
Fixed point coordinates: 

X0 ≈ − 0.27 , Y0 ≈ 0.55
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Phase and amplitude of stimuli

Suppose the favourable phase  is known, then θ0

- we stimulate around  with pulse strength                                  
  

θ0
An = A(tn) = max(εfbain(tn), − A0)

We implement a feedback with the factor : 

The pulse strength  is limited:  

εfb < 0
An |An | ≤ A0

Practically, we check the conditions |θ(t) − θ0 | < Θtol

|θ(t) − θ0 − π | < Θtol

- we stimulate around  with pulse strength                                  
  

θ0 + π
An = A(tn) = − max(εfbain(tn), − A0)

ain(tn)

An
A0
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Simple case: rectangular pulses

The pulse strength  is determined by An ain(tn)

Δ
δ

An

An+1

tn−1 tn+1tn

Δ
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Example 1

Rectangular pulses

Stimulation parameters θ0 = 0 , εfb = − 0.05

0 2000 4000 6000t

-1

0

1

X,
P 1500 1520 1540 1560

-1

0

Bonhoeffer-van der Pol model, ε = 0.03,ψ = 0
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Efficiency of suppression in dependence on choice of θ0

Suppression coefficient S = std(Xautonomous)/std(Xstimulated)
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40
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0 2 4 6θ
0

b)

-0.05
-0.15
-0.3

ψ = − π/4ψ = π/4

values detected as optimal by  
an automated algorithm 
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Adaptive control
We adapt the technique from 

We adjust  after each complete cycle according to θ0, εfb ā

 is average of  over all points where we do 
not stimulate
ā ain = ̂x2 + ̂y2

The update rules: θ0 → θ0 + k1ā(1 + tanh[k2(ā − astop)]

εfb → εfb − k3ā/cosh(k4εfb)
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Example 2
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Snapshot, 
autonomous 

system

Snapshot, 
stimulated 

system
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Does it work with chaotic systems? Example 3
Rössler oscillators, coupling  ε = 0.1 , ψ = π/4
(Critical coupling of the Kuramoto transition ) εcr ≈ 0.05

-5 0 5X

-5

0

5

Y

Here we use only two 
pulses per period, A0 = 2

For strongly coupled 
system, , we have

to increase  and

allow stronger feedback 

ε = 0.2
A0 = 4
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Charge-balanced stimuli
We tested the following pulse form:

Here  are fixed within trial, while  varies with each pulseδ, Δ1, Δ2 An

We set , then Δ2 = 10δ An,− = − An/10

blue area=yellow area

An+1

δ

Δ1 Δ2

An,−

An

The simplest case  
is inefficient

Δ1 = 0

An+1

δ

Δ2

An,−

An

We have to choose  large enough so that low-amplitude 
pulse comes in the least sensitive phase

Δ1

tn
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Charge-balanced stimuli
We tested the following pulse form:

Here  are fixed within trial, while  varies with each pulseδ, Δ1, Δ2 An

We set , then Δ2 = 10δ An,− = − An/10

blue area=yellow area

An+1

δ

Δ1 Δ2

An,−

An

The simplest case  
is inefficient

Δ1 = 0

An+1

δ

Δ2

An,−

An

We have to choose  large enough so that low-amplitude 
pulse comes in the least sensitive phase

Δ1

tn

one stimulus
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Charge-balanced stimuli
We tested the following pulse form:

Here  are fixed within trial, while  varies with each pulseδ, Δ1, Δ2 An

We set , then Δ2 = 10δ An,− = − An/10

blue area=yellow area

An+1

δ

Δ1 Δ2

An,−

An

The simplest case  
is inefficient

Δ1 = 0

An+1

δ

Δ2

An,−

An

We have to choose  large enough so that low-amplitude 
pulse comes in the least sensitive phase

Δ1

tn
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Charge-balanced pulses II
Most efficient we find the following pulse form:

NB = 2

δ

Δ

Δ1 Δ2

An+1
An,−

An

blue area=yellow area

Results: Bonhoeffer-van der Pol model

tn
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Rectangular pulses vs. charge-balanced pulses
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Summary

• Suppression of synchrony with rare pulses 

• Works for charged-balanced stimuli;  
stimulation and measurement are separated in time

• Automated tuning of the feedback parameters

• Enhancement of synchrony is possible as well (but you 
cannot beat the injection locking approach)
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Some important issues
• Optimisation of the pulse’s shape

• Optimisation of the stimulation by machine learning

• Real-time phase and amplitude estimation
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Outlook
• Algorithms for phase/amplitude estimation with artefacts 

removal

• Improved adaptation algorithm (both increasing and 
decreasing ) for suppression in case of slow varying 
parameters

θ0

• The utmost goal: clinical implementation in cooperation 
with Charité – Universitätsmedizin Berlin

Transregional Collaborative Research Center for Neuromodulation


