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| can't cover all Tom has done.
I'll add a more general viewpoint with statistics to match.

Any errors are mine and not his.

Thomas Jungling (U. Western Australia)- interesting way to write RC dynamics



Introduction to
Reservoir Computers (RC




Reservoir computer driven by a dynamical system

Input layer Reservoir Output layer Classes

y X’ 1
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AandoncRiad] : Xt 1) = £(x (t%ramed weights 2

Random, fixed connections
— =f(y) . — = (x ) —:F(x )+62Cl..H(x )+ JOy)
dt : dt dt P

network

Can also use maps (iterated functions) y(¢ + 1) = f(y(¢)), etc.

e RC can be physical systems.



What can a reservoir computer do? (1)

Loorenz chaotic 1‘(1‘)2 (7‘1,7‘1,...,7']\;)
tra.] CCtOI'y —~ Input layer Reservoir Output layer Classes
oem. X al
w0 &, SR 0 Y W
N 3] z(¢) j=1
Trained weights .

Random, fixed input weights
Random, fixed connections

FAST training o
Only train output weights

Reservoir is unchanged

FAST operation



What can a reservoir computer do? (2)

Lorenz chaotic
trajectory r(t)= (7'1,7‘1,...,7']\7)

N
(c) spintronics rese::?ir” ;C/Eg z(1)= Z Wz,j r;
FAST training g /’ (1) j=1
FAST operation i
e RC can be |
physical systems.
Dyna mical SVStemS Physical reservoir computing—an introductory perspective

Kohei Nakajima, Japanese Journal of Applied Physics 59, 060501
(2020)



contrast with NN Neura/ Networks

OUTPUT:
Classification
(image of a dog,
the word
"Webinar",

a bird song,...)

INPUT:
Information
Input
(digitized words,
images,
sounds,etc.)

%
9.5
%

%
Yl
=
pANA
Q

W
4

A
\
)
@
’
&
)

AN
A

X
A
I‘N
:\‘
. \o// Wil
'f.'{
o
E
ra)

Y
|

'\
SO
kS

A

WY

)}i

729

%

Ly L]
',// &
.«

d
})}2..

Supervisory Trained by adjusting
the weights and internal
connections
(training can take long times and
require massive computing power)

Highly successful for certain tasks (an expanding
class) and commercially useful!



The origin of RC

H. Jaeger (2003), Adaptive nonlinear system identification with echo state networks. In S. Becker,
S.Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems: Volume. 15 (pp.593-
600). Cambridge, MA: MIT press

Maass, W., et al.: Real-time computing without stable states: A new framework for neural
computation based on perturbations, Neural Computation, 14 (11),2531-2560 (2002).

No equilibrium or fixed points
=> dynamical systems!

Nonlinear Dynamics community:

Ulrich Parlitz and Alexander Hornstein, Prediction of Chaotic Time Series,
Chaos and Complexity Letters, volume 1(2), 135-44 (2005)

L. Appeltant, I. Fischer, et al., Nat. Commun. 2, 468 (2011).

Pathak, Zhixin Lu, Brian R. Hunt, Michelle Girvan, and Edward Ott, Using
Machine Learning to Replicate Chaotic Attractors and Calculate Lyapunov
Exponents from Data,



Some fundamental problems
in RCs




Full understanding is still missing.:

Underlying theory
Optimizing design
Limitations and pitfalls

but also hampered by:

Vague concepts
and
Incorrect explanations
(Hand-waving explanations)



Problems with and questions about the Al approach to RC

STEPHEN BOYD AND LEON 0. CHUA (modeling time series or time operators)
Fading Memory and the Problem of Approximating Nonlinear

Operators with Volterra Series,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-32, NO, 11, NOVEMBER
1985

Nu(t)=h0+ 2 f”'fhn("'ls"‘a"'n}‘u(t'—'rl)"'u("""n)d”'l"'d"}z
n=1 '

to have the series converse the system must have a memory cutoff or a fading memory

=> Forget initial conditions



1. Memory.

2.

Fade, but more memory is good.
There's some best amount of memory.
How to measure memory?

How stable should RC be?

Nearly unstable, or close to the "Edge of Chaos" — maximal
amount of entropy is here?

Effect on memory?

How to measure stability?

. What type of nodes to use?

Sigmoid functions (e.g. tanh) ?
— only sigmoid functions — origins in neural networks.
— It's not RC unless nodes are sigmoid functions

. What type of networks to use?

Random, Erdos-Reyni ?
Sparse ?
Random weights ?



Reservoir computers are driven, dynamical systems
—p

— W

—

W

i| = info

same signal into same response => same output

Generalized synchronization: Rulkov, Abarbanel et al.
Physical Review E Vol. 51, No. 2, 980 (1995)

Stability requirement. driving two systems with same signal =>
they should synchronize, if they are stable



1. Memory.

2.

Fade, but more memory is good.
There's some best amount of memory.
How to measure memory?

How stable should RC be?

Nearly unstable, or close to the "Edge of Chaos" — maximal
amount of entropy is here?

Effect on memory?

How to measure stability?

. What type of nodes to use?

Sigmoid functions (e.g. tanh) ?
— only sigmoid functions — origins in neural networks.
— It's not RC unless nodes are sigmoid functions

. What type of networks to use?

Random, Erdos-Reyni ?
Sparse ?
Random weights ?



Takens theorem (1981)

Original attractor pick a time delay (7) and dimension (d)
v, =[x(¢), x(¢-T), x(¢-27),..., x(t-(d-1)7)],

Vo=[x(t+7), x(1), x(¢-27),..., x(t-(d)7)], _
Reconstructed
V3:[X(f‘|’2T), X(t+3f), X(f‘|‘4T),..., X(f-(d+])f)], attractor

diffeomorphism
(continuous, differentiable, inverse)
Whitney Embedding Theorem

Dynamical and geometric
properties of Original attractor Y,
are also the same in the
Reconstructed attractor.

What time delay (7) and dimension (d) to use?
Still not fully worked out.



Fundamental dynamics of
RC




Develop a mathematical model that will expose the nonlinear dynamics of RC

and the underlying geometric structure.

drive RC
map u(t) = u(x(t))
x € RE  x(t+1)=h(x(t))

network of
N linked
dynamical
nodes

r(0)=flu(z-1), r(¢-1)]

map Tp(t) =flu(t —1),flult —2),flu(t — 3),....,flu(t —n),rol...]|]| = gn(u,rg)

We want the sequence {r,(t)} to converge to the same point as n increases since we expect the RC to be

in generalized synchronization. Using the Cauchy condition on the initial value r, we need to have

gk (u,ro) — g1(u,rg)| < € fora choice of € and for k and / large enough.
g (u, I'O) — r(t) Uniformly convergent. r(¢) is unique and inherits properties of {g;}

=> dynamically driven RCs can reconstruct the attractor of the drive system



Reconstructing an attractor using RC

Grigoryev, Hart, Ortega, https://www.researchgate .net/publication/344496076

Assumptions: with the change

“*The drive is an invertible map N of ;?SGfVQif type

% Attractor is compact topological space or dimension one
P POI0E P > of these or other

** Reservoir dynamics is a contracting map assumptions
y

, can be violated
Physical System:

+** Don't have a good model
“* Can't establish all the theorem assumptions Embedding?
** We have time series from the system.

We need statistics to gauge continuity and differentiability
and other mathematical properties from data/time series.

...and these will help answer some earlier questions about memory, stability, etc.



The continuity and
differentiability statistics
and other measu

RCs and emk




Reconstructing an attractor using RC

Izo(y—x) N
dr;
d 2 3
C%=—xz+px—y d_tz = Oz[l-ﬂ(plfl“i + par; ) + p3r; + ]Zl Aijrj -+ wia:(t)]
dz _ -
T Pz
Lorenz drive Poly reservoir
@ 7
A
|
continuous
differentiable
invertible

Inv. continuous
1nv. differentiable

diffeomorphism



A Continuity Statistic
A function f(x) is continuous at a point X,
YV e>0 I5>0:whenever |x—x,|<dé =|f(x)—f(x,)|<e

Not functions, but two simultaneous vector data sets (time series)
{y(t)} and {r(t)} t=1,2,3,... from drive D and from reservoir R

drive reservoir

4 7N,
di

7

p

(l
N




A Continuity Statistic
A function f(x) is continuous at a point X,

YV e>0 35>0:whenever |x—x,|<6 =|f(x)—f(x,)|<e€

® /\. PS Null Hypothesis: points are

v(t) @ O o or) | o mapped into € set with p;ob. Pe
) k ® . . )
s ° tk\/ o p.=0.5 acoinflip
‘D = —> R ’ .
CcO? n.=6 to reject Null at 0.98

<& >= g g*/gmin or & /Ostd . continuity statistic

These statistics depend on the amount of data. We cannot let € >0.



A Continuity Statistic

e Statistics for Mathematical Properties of Maps between Time-Series Embeddings, L.M. Pecora,
T.L. Carroll, and J.F. Heagy,, Physical Review E, 54, 3420 (1995)

e Detecting Drive-Response Geometry in Generalized Synchronization, L.M. Pecora and T.L. Carroll,
International Journal of Bifurcations and Chaos, 10, 875-890 (Apr, 2000)

e A Unified Approach to Attractor Reconstruction, L.Pecora, L. Moniz, J. Nichols, and T. Carroll,
CHAOS 17, 013110 (2007)

e Kraemer, Datseris, Kurths, | Z Kiss , Ocampo-Espindola and Marwan,
New J. Phys. 23, 033017 (2021)



A Differentiability Statistic

A function f(x) is differentiable at a point x, if local points
are approximated by a linear map from Xx, ,
1.e. there is a tangent space.

Use local points from the continuity statistic to see what dimension the
the Singular Values of the differences from x, are.
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P o 01 o differentiability
b - statistic
Z Do, > R
e*/e, . or & */0y4q and SVdim  ~ Diffeomorphism



A Continuity Statistic (remarks)

e */gmin or €¥0 std

We assume nothing about the possible functional relations between the data sets.
The statistic is for one direction only (D = R). It says nothing about the inverse.
The inverse is a separate independent statistic, (R > D)

The statistic 1s inherently local.

The statistic is dependent on the number of points in the data set.

e*/o,q 1s approximately the relative size of the smallest discontinuity we can detect.
If ¢* scales with ¢, then this 1s further evidence of a continuous function.

This is a statistic= evidence (or not) of a continuous function. Not a proof.



The continuity and
differentiability statistics
and other measu

RCs and emk




A Continuity Statistic (simple test)

Lorenz Polv reservoir

o dr,
E_O(y X) o 175+ pary) + pari+
dt driving term
dl:—xz+p X—y N
dt damping factor Z Az-jTj + t)]
—=Xxy—pz p1 <0,pp <0 7=

D R



A Continuity Statistic (simple test)

p1<07p2<0

Lorenz Poly reservoir
) d
dt ri 2 3
dy _ — 17”z'-|-p27“7;)—|-p37“7;—|-_.
) = XZHpX=Y dt driving term
I3
dz _ N
E—xy—/)’z - A
B D damping factor Z iiT t)] R
r / j:1
D — R x=1.0 R —> D
— o e 4\0’0 —&— o r —&— o
—— €%k /Emin '/./’\Q//‘—_’ —— e /emin
1@0_—
1.00-10% _ ]
c f = o
B oW Homeomorphism
* ~ *
w X w
w
1071t
. -1 ) ] ) ] ) ] ) ] ) ! ] ! ] ! ] ! ] !
1.00-10 ) 2-104 4-104 6-104 8-104 1-10° 0 2-104 4-104 6-104 8-104 1:10°
npts
. . ~ npts
SV dimensions ~ 2.5 P

Diffeomorphism
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Traing Error
01

1073

Traing&Testing—z—Errors.ddat

(40 K points)

Training and Testing errors and
continuity statistic

—e

Train

Error

Testg Error

AN

N

-

10!

10°

x drive

output z

10-1
€k

std

102 -

dx _ d’r
dt"aLy x) — = alk(piri + p2ri) + pari+
dy _
dt —XZ+pX—Yy
d_ g, ZAW + w;z(t))]
a Y j=1

Lorenz Poly reservoir

r
{f _
e i
//
/
N~ /
T~ / ]
y
7
10! 100



continuity and dynamics

o o . good continuity
- __ ~ continuity statistic ! Lorenz Polv reservoir
Testg Error E \\\ f: "

]

o

= std E Sl
K e "I" r
Large dissipation
Lorenz Poly reservoir
RC points
vl are squeezed
down to small
X region.
r(t) = &, [0, (x(t — 7)), &, [V, (x(t — T = < — n7))]...]

Under-embedding




continuity and dynamics

continuity statistic

- rraing Errer £ — ' Lorenz Poly reservoir
5 \\\\ il
aul = !
LS std i 1
K K Y X r
Small dissipation Inverse= contraction
Lorenz Poly reservoir Lorenz Poly reservoir
nearby Lorenz ,
points are spread v| #8
out on the RC ,

Over-embedding




Overembedding dynamics and attractor geometry T, (t) = [u(t — 7‘), u(t — 27‘), u(t — 37‘), ceny u(t — 77/7')]

10 10 10 10 A S ————————

08 08 08 08 4

06 06 06 061

X(t) §0v4 %0,4 " 04 T 041

02 02 02 02 1

00 00 00 0] e ——————
0 0 3 10 w0 x('t—l—i) 8 10 ' ' x(t—|—3) 08 '

x[i]
«[i]

00 02 8 10

x(tHl) x(t+6)
The attractor takes on fractal qualities into higher dimensions
=> the attractor looks higher dimensional at lower resolutions

This ruins any maps between finite data sets which might normally be continuous
and smooth (differentiable).

There may still be synchronization (negative Lyapunov exponents),
but this is often referred to as "weak" synchronization.



Lyapunov exponents of dynamical systems
and
Kaplan-Yorke formula for attractor dimension

Ix 15x A < 0 stable
= F(x) and —— = DF(x)0x wmp |0x(t)] ~ e’ 1 =0 neutral
dt A > 0 unstable (chaos)

A is a Lyapunov exponent. If system is d-dimensional it has d Lyapunov exponents.

Example: A chaotic Lorenz system has 3 Lyapunov exponents ( 1.50,0,—22.46)

J
Fractal dimension= Dy = J + 2 /lk J = number of terms for which the sum is positive

KY 2 . :
k=1‘ j+l (this 1s a conjecture)

For the Lorenz system Dgy= 2.067

A filter or RC or any driven system can increase the dimension of the attractor if it isn't stable
enough so that its own dynamics do not contribute to the attractor geometry.




Lorenz

train error

Edge of Chaos -T. Carrol|
s(©) = x(t), xi(n+1)=(1-a);(n)+a tanh > asws(+l)  vary a

i=1 S e
Lorenz->Leakytanh

Kaplan-Yorke
dimension increases

LA,
DKY_].+ZM

j+l1

14 -12 -10 -08 -06 -04 -
maximum Lyapunov exponent

The fractal dimension of the reservoir is changing with a

» Low dimensional manifolds in reservoir computers, T. L. Carroll, Chaos 31, 043113 (2021)
» Dimension of reservoir computers, T. L. Carroll, Chaos 30(1), 013102 (2020).

* Do reservoir computers work best at the edge of chaos?, T. Carroll, Chaos 31, 043113 (2021)



Reservoir computers are driven, dynamical systems

consistency or reproducibility: same signal into same RC => same output
Generalized synchronization: Rulkov, Abarbanel et al.

Stability requirement: driving two systems with same signal => they should synchronize => stable

RC1
A1 /

RC2

RC stabili neralize synchronization



Period- doubling example or why stability is NOT enough

Periodic system driving a nonlinear, period-doubled system.

This is a stable situation
/1 /\

erzy. Wl’2 —V. => W(l‘l—l‘z)zo
W has a non-trivial null space.

Subharmonic Entrainment of Unstable Period Orbits and Generalized Synchronization
Ulrich Parlitz, Lutz Junge, and Ljupco Kocarev, Physical Review Letters, 79 (17), 3158 (1997)



1. Memory?

® Fading?:Yes, at an optimal rate
® More?: No, more is not necessarily better

2. How stable should the RC be?

Stable enough to avoid over-embedding

But less than causing under-embedding

Stable so that generalized synchronization is present,

Test for mappings between drive and RC in both directions
Stability depends on drive and RC.

i + 6% + ax + Bz’ = ycos(wt)

Do not use noise/random signals to drive a
(nonlinear) RC to determine stability.

from Wikipedia:
https://en.wikipedia.org/wiki/Duffing_equation

Time traces and phase portraits

period-1 oscillation at v = (.20

period-2 oscillation at v = (.28

period-4 oscillation at v = (.29

period-5 oscillation at v = 0.37

chaos aty = 0.50

period-2 oscillation at v = (.65



1. Memory?

® Fading?:Yes, at an optimal rate
® More?: No, more is not necessarily better

2. How stable should the RC be?

¢ Stable enough to avoid over-embedding

® But less than causing under-embedding

¢ Stable so that generalized synchronization is present,

® Test for mappings between drive and RC in both directions
¢ Stability depends on drive and RC.

The central 1ssue 1s the embedding of the drive in the RC
I‘(t) — (I)T[\IJT(X(t o 7_))7 (I)T[\IJT(X(t o 27—))7 ) q)T[\IJT(X(t o TLT))]H

What T to use?
What dimension for the drive manifold?
Calculation of Lyapunov exponents for the system.



Detecting Basins of
Attraction




Bifurcations and Basins of Attraction

Lorenz -> Polynomial (deg.3) (Lor_Poly)

X o(y—x)

dt N driving term

dy dr; , 2 3

E:—xzﬂo X—y E:a ri+p2 ri +p3 ri +Z Aij rj ] training X,),Z
dz =1

(F:xy—ﬁz /

P1:-7.0,-6.0,-5.0,-4.0, -3.0, -2.0, -1.0, -0.5

edge of chaosI p3=—1.0

» 40000 points in time series

» training error,

» testing errors — both time shifted and different ics!
» continuity statistic

Py= +3.0



Training & Testing errors

Lorenz -> Polynomial (deg.3) (Lor_Poly)

dr,

dt

|

Lorenz —> Polynomial RC

Training & Testing (different ics) errors

Training & Testing Errors

xtrain
ytrain
ztrain
xtest

ytest
ztest

-2.0 -1.0

0.0

2 3
'+ D, +PDsT +]

Same weights W used
for training and testing



r3

3

Reservoir Trajectories (Polynomial degree 3)

8.4

traintrai Lor Palwi.dl.rl. pl=—4.208R0R-0Ts. dat.data

" " .

2.4 9.8 0.4
testtral lor Palwi.d2.r2.0l=-4. 1000080t s. dat.data

rl

9.8

r3

r3

r3

traintrai Lor Polvw3.dl.ri.pl=-2.0.10R080-pts.dat.data

2.8 T T T T T T

1.6+

1 A A 1 1 A " 1 1

A

testtrai Lor Polvwd.d2.r2.01=-2.8.100080-0ts

-0.8 -8.4 0.0 9.4 0.8 1.2 1.6 2.8 2.4 2.8

2.8 T T T T T Y T T

9.8 -0.4 9.2 9.4 0.8 1.2 1.6 2.0 2.4

rl

3

r3

r3

traintrai Lor Polvv3.dl.rl.p01=-1.0.180808-0ts, dat . data

1 1

testtrai Lor Polva2db. r2.01=—1.0. 1000800t s 2dot. data

2.0 2.4 2.8

r

3

3



r3

3

Reservoir Trajectories (Polynomial degree 3)

8.8

8.8

B.or

traintrai Lor Palwi.di.rl.pl=—4.208000-0ts. dat . data

T T T

2.4 2.8 0.4
testtral lor Palwi.d2.r2.0l=-4. 1000080t s. dat.data

rl

r3

r3

r3

2.8

2.8+

1.6+

2.8

traintrai Lor Polvw3.dl.ri.pl=-2.0.10R000-pts. dat.data

L 1 I A 1 1

Il for p1=-1.0, appears like attractors are slightly shifted from each other.
Maybe very long transients? They are close, but not the same. Or the
synchronization invoked by the p3 term is not exact since that term >0
faster than linear leaving the system to wander when close, but not
forced to get fully "synchronized" Or, the attractor dimension maybe
getting much larger given the smaller Lyapunov exponents (check this)
and a lot of them near the same value so perturbations (numerical) can

push the trajectory into many directions.

Follow up: Actually at least two of the coordinates did not match at all

=> basin statistic is correct.

2.8 -8.4 0.0 9.4 0.8 1.2 1.6 2.8 2.4 2.8
testtrai Lor Polvwd.d2.r2.01=-2.8.100080-0ts

A

L L
testtrai Lor Polvv}z.a‘i. r2.01=-1,48. 1““H!s?dgt.data

3 3.2 r

T

rl

r3




i Continuity Statistic

d_
d 4 N
%Z_XHPX_Y %=G[P1ri+Pzrf+P3r?+Z Aijrj+uix]
%=xy—ﬂz -
D R
0.7 - . .
T T T
- o 0 e D—R
0.6t Continuity for
0.5l training e D—TR
£*/o std SV dim Statistic
0.3 S T
A has same trends
0.2
@ .. . H
BN N o SN G ¢ Same continuity
.................................... ; results for testing
@lg’ ................. , , .
-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Pi

Are the training and testing time series
on the same attractor?



Attractor Comparison Statistic

(including different basins of attraction-
same dynamics, same parameters, different ics.)

e 100 dimensional systems Do this for train and test reservoirs ‘R
e Do NOT de-mean, shift or rescale (std, etc.) _
B /est R-> Train R different
B 7rain R > Test R attractors
B /rain (R%R time shifted) same
B 7rain (R time shifted>R) | attractor
1.00 10°F 3
A—>B i
. . 1.00-1071F 3
Get nearest neighbor(s) on B to point on A : E
and calc. distances from B point to A point S i
1.00-1072f 3
Do this for several points (1000) : ]
and calc. average distance= S - ull
1.00-10-3— ' ' ' ' ' ' :

-8.0-7.0-6.0-5.0-4.0-3.0-2.0-1.0 0.0 1.0

Do this for B 2> A

pl
Show extension of this statistic to trajectories for dynamical systems



Attractor Comparison Statistic

training attractor testing attractor

32

3.2

7"3VS.I"19 -

2.8 it

testing attractor

o
trai Lor Polvv3.d2.r2.01=-1.0.100000-nts.dat.data

training attractor

u
traintrai Lor Polvv3.d1.r1.p1=-1.0.100000-nts.dat.data

2.8
24

7’37 VS. 7'44 -

20 |

1.6 |

1.2 2 . . 4 L L s n L
1.6 2.0 2.4 2.8 -0.8 04 0.0 0.4



Adding to the robustness of the ACS

y(t) -20 -10

Don't forget the dynamics!



Postdicting and Predicting
(fading memory)




Continuity and training error with time shifts

Predicting and Postdicting (predicting into the past)

fits to Lorenz using LT Reservoir

1.0

0.8

o(fit=signal) ost
a(signal)

0.4

0.2

100

n time shift

Fit errors trend matches continuity

k=1.0

Errors.ddat

107

102

.
1Nl

103

4+
|

aimning

=
=

10!

G—

Reservoir --> Lorenz continuity

K

40

30 -

m

Emin

past

future

0
-100

1
0

n time shift

1
50

Postdiction captures the "fading memory" quantitatively

100




xerr

Continuity and training error with time shifts Predicting and Postdicting

training error at O shift continuity
. ~ 4 lg o ]
10-1 -~ = Traig o ~_statistic i
e - drive to RC
™y \..\
\, 107 ERE .
102 k\ €%k \.\\0\ / ; E - RC to drive
Y J -
tyf std P
>—/“'/ |
| _ 102 :
10! 100 10" — g 100
— K
) ) TraingErr.vs.nshift.K=1.0.LorPolyv8.dat.data . .
TraingErr.vs.nshift.K=12.0.LorPolyv8 TraingErr.vs.nshift.K=0.80745.LorPolyv8
yerr - 9.12 ., | st
0.12 IR i 7 R - serr e 0.12 R
A% AVAAY, \/‘f\ @ éﬁ AVAVATAVAVAVATAY \ T \\zi MM:WT
Y g\ ’ '“"‘\\,\ \\\ gl T il \E g
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Conclusions

o

o

Even in simple RC systems nonlinear phenomena are important and nonlinear
analysis captures the behavior quantitatively.

The computer science/Al communites have taken network dynamics in an
interesting and potentially useful direction, but the analysis of these systems
must be informed by nonlinear dynamics.

We don't always have accurate models or theorems. Need statistics that are
modeled on mathematical concepts (continuity and differentiability) and make
no more assumptions than necessary.

Reservoir properties cannot all be measured independent of the drive signals.
Dynamical properties (memory, synchronization, attractor embeddings, stability)
are all linked to the drive and the RC.

Paper to the arXiv soon

Questions, comments ?



