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Challenges: applying network physiology to clinical medicine

Doctors will look to discoveries in the new field of network physiology to
help them take care of patients.

Many share the idea that we can detect some subacute potentially
catastrophic deteriorations have signatures of illness.

If we can detect illness early, we can diagnose and treat early, and we
should improve outcomes.

These are phenomena that applications of network physiology might seek
to discover and quantify.



Challenges: applying network physiology to clinical medicine

Here are examples if signatures of iliness:
- rising heart rate and falling blood pressure early in hemorrhage
- bradycardia and oxygen desaturation in neonatal sepsis
- disrupted sinus arrhythmia in just about any illness or injury

Note that the abnormality may not lie in the measured value of one
parameter, but in the way that two or more systems interact, or fail to, over

time.

As we progress in the field and look to apply the principles of network
physiology to the real world, we can stop to think about new challenges
that, if met, would bend the arc toward the bedside.



lvanov on this topic:

Studies on structural and dynamical aspects of physiological systems that transcend space and time
scales.

Functional forms of physiologic coupling, time variation and effects of pair-wise interactions on the
dynamics and control of individual systems.

Networks comprised of diverse physiological systems and associations between physiologic network
structure and physiologic function.

Evolution of pair-wise coupling and network topology with transitions across physiologic states; basic
principles of hierarchical network reorganization.

The role of time-dependent network interactions for emergent transitions in network topology and
function.

Manipulation, control and global dynamics of networks in response to clinical treatment.

Information flow on network topology in relation to cellular and neuronal assemblies and autonomic
control of organ systems.

Networks of physiological networks transcending interactions of sub-systems to interactions among
organs.

Cascades of failure across systems as encountered in ICU critical care.



Challenges: applying network physiology to clinical medicine

1. New experimental paradigms
| review the autonomic nervous system and suggest basic science and
clinical scenarios to think about

2: New measures for physiologic time series
| show some new results, mostly published

3: Isolate the physiological network of the hospitalized patient from the
external networks
| show some new results



Challenge 1: New experimental paradigms

The autonomic nervous system couples the heart and the lungs via the brainstem.
Inter- and intracellular signal transduction are the ultimate mechanisms.

The cholinergic anti-inflammatory pathway is an exciting network to think about.
Clinical situations may lead to changing network physiology.

Carrara et al. Ann. Intensive Care (2021) 11:80
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A new NP paradigm: Cholinergic anti-inflammatory pathway
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Direct evidence of the cholinergic anti-inflammatory pathway
Atrioventricular block in mice peritoneally-injected with micro-organisms
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A new NP paradigm: intercellular physiological networks
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Applied network physiology of the heart and lungs

There are at least three forms of interaction:
1. Respiratory sinus arrhythmia (Hales, 1756)
2. Cardiorespiratory synchronization (Schafer, Rosenblum, Kurths, Abel, 1998)

3. Time delay stability (lvanov, 2012 or so)

Schafer and lvanov showed that RSA and CRS are different
lvanov and coworkers show that time delay stability is different from the others

Thus, we have three different measures available to us from the standard time
series of vital signs or other bedside continuous cardiorespiratory monitoring.
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What if breathing dynamics change?

All the measures are robust to ordinary variation in breathing rate because they
normalize each breath to 2z radians.

And this has been OK because clinicians are not much aware of breathing beyond
its rate. (This has included me.)

But here is new work that has changed my mind and opens the door for new work

in the applied network physiology of the heart and lungs, hitherto largely confined
to sleep studies.



My colleague SM Gadrey, MD,
a hospital internal medicine
physician, wanted to quantify
clinical ideas about breathing
like “fast,” “labored,” heaving,”
and so on.

He placed sensors on the chest
of 20 volunteers in an exercise
lab to work out the technique.

He then approached >100
emergency department
patients and made multiple
2-minute recordings.
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He used a 1Hz
iInterpolation scheme to
help the determination
of breathing rates.
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The new method counted rates well c/w flow meter
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Emergency room patient admitted to ICU
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Emergency room patient admitted to ICU
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Labored breathing predicts clinical outcome
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What will the canonical analytic frameworks:

e respiratory sinus arrhythmia
e cardiorespiratory synchronization
e time delay stability

make of the very non-stationary, very informative breathing
dynamics?



Summary

Network physiology is an appealing clinical construct.

New experimental paradigms can extend the ideas to the bench and the
bedside:

Cholinergic anti-inflammatory pathway
Nearby excitable cells

Intracellular processes

Clinical recordings from sick patients
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Challenges: applying network physiology to clinical medicine

1. New experimental paradigms
| review the autonomic nervous system and suggest basic science and
clinical scenarios to think about

2: New measures for physiologic time series
| show some new results, mostly published

3: Isolate the physiological network of the hospitalized patient from the
external networks
| show some new results



Challenge 2: New measures for physiologic time series

Highly comparative time-series analysis

Fulcher, Little, Jones 2013  htip://dx.doi.org/10.1098/rsif.2013.0048
Fulcher, Jones 2017 https://doi.org/10.1016/}.cels.2017.10.001
Fulcher ... Jones 2020 https://doi.org/10.1038/s41597-020-0553-0


http://dx.doi.org/10.1098/rsif.2013.0048
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Table 4. Families of algorithms implemented in highly comparative time series analysis.

Family Description Example(s)
Distribution Moments and other descriptive statistics Mean, median, standard deviation
Correlation Similarity of data points as a function of the time Linear and nonlinear autocorrelation

between them
Stationarity Statistical properties do not change over time

Symbolic transforms ~ Convert ranges to letters and analyze their sequence
Entropy Order and regularity

Trend analysis Fitting lines through data

Heart Rate Variability =~ Canonical analyses

Time Series Modelling Fits time series model to data

Wavelet Properties of the time series wavelet spectrum
Nonlinear Analysis Nonlinear analysis methods
Other Extreme values

Standard deviation of moments measured on different window
lengths

Frequency of successive increases

Sample entropy

Slope and intercept

Power spectral density ratios

Surprise

Wavelet decomposition of time series

False nearest neighbors, Information dimension
Moving threshold model




Application of highly comparative time-series analysis to
neonatal ICU death

We implemented 2500 numerical algorithms on 300-point records of g2sec vital
signs - 5 minutes of heart rate and oxygen saturation

About 75 led to NaN

We clustered the results of the rest using mutual information

We characterized each cluster by a metric near the medoid that was interpretable
We chose the top 20 clusters

The result is a comprehensive toolbox of metrics from an unsupervised analysis
It can be used for any neonatal problem using, say, logistic regression

It can also give insight into new metrics of use in the neonatal ICU






Application of highly comparative time-series analysis to
neonatal ICU death

Table 3. Model performances as a function of days until death.

Model name Candidate features Model size <7 days
HR-SpO, - demographics 21 6 0.853
HR-SpO, 20 5 0.828
HR-SpO, 20 3 0.821
HR-SpO,: cluster centers 20 5 0.819
HR 10 5 0.809
HR: successive increases 1 1 0.799
HR-SpO,: means and SDs 4 4 0.774
SpO, 10 5 0.765
Demographics 4 - 0.714
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New insights from highly comparative time-series analysis

Surprisal; conditional p of the next point given the recent distribution: low HRV
Moving threshold: extreme events in dynamical systems; large excursions
Sucessive increases: symbolic dynamics; lack of HR accelerations

Random walk: many statistics on the fit of a model; slow decline in O2 saturation



Highly comparative time-series analysis vs
neonatal sepsis



Abnormal heart rate characteristics precede neonatal sepsis

Moorman, others 2001
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Fold-increase in risk of sepsis in the next 24 hours
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Challenge 3: Isolate the physiological network of the
hospitalized patient from the external networks

The hospital patient is part of a complex network of care providers, tests, and
medications along with the dynamics of the illness.

It is an important challenge to separate the dynamics of the patient’s iliness
from the decisions - and distractions - of the clinicians.

Physiology should change first, but we base much of our hope for early
detection of illness on information in the Electronic Health Record, a narrative
of what is on the clinicians’ minds.



Here is what the clinician ordered: what is the diagnosis?

Description Department Quantity
EKG Routine tracing only EKG 1
ECHO 2D W/OR W/O M-Mode Cardiology 1

complete W/color flow

ER Level V

XR Chest 2 views

Culture blood

Partial thromboplastin time (PTT)
Prothrombin time (PT)
Complete CBC AUTO W/O DIFF
TROPONIN QN

B-Type natriuretic peptide
Lactate/lactic acid

Creatine kinase (CPK) MB only
Creatine kinase (CPK)

Emergency room
Diagnostic imaging

Laboratory
Laboratory
Laboratory
Laboratory
Laboratory
Laboratory
Laboratory
Laboratory
Laboratory

Comprehensive metabolic panel

Therapeutic/DIAG INJ IV push single
INITI SUB/drug

DOCUSATE NA, COLACE CAP 100 mg
Aspirin Tab 325 mg (EA)
Moxifloxacin, Avelox IVPB 400 mg
Moxifloxacin, Avelox tab 400 mg
Metoprolol, lopressor tab 25 mg

Ipratropium, atrovent INH SOL 0.02%
25ml

Heparin NA VL 5000 U/ml 1 ml
Furosemide, Lasix tab 20 mg

Albuterol, proventil INH SOL 0.083%
3ml (2.5 mg)

R&B Telemetry private

Laboratory
IV Therapy

Pharmacy
Pharmacy
Pharmacy
Pharmacy
Pharmacy
Pharmacy

Pharmacy
Pharmacy
Pharmacy

Room and board

—

B T W W W Y




Generating Source Resulting Data Modalities

Non-Clinician Initiated Data — data not based on clinical decisions

Patiatit Routine Telemetry Telf:metry 'data that is collgc?efl on all
bivatal > patients will not encode clinician
Physiology Data decision making

Clinician Initiated Data — direct result of clinician actions & decisions

Physicin EMRs capture clinical actions and may
yl' n EMR Data directly capture some physician beliefs
Beliefs in the form of clinical notes
Phys.ician 5 Charge Details Charge details include items and actions
Actions associated with costs




Challenge 3: Isolate the physiological network of the
hospitalized patient from the external networks

In addition to the decisions of clinicians, there are their distractions.

The actions of one agent are coupled to those of other agents - for
example, the sudden iliness of a patient might lead to a flurry of actions by
one more clinicians, coupled in that one might order a test but another sees
the result and acts upon it.

Or the extreme illness of one patient might distract clinicians from the other
patients, whose standard tests and actions are delayed and disorganized .



Challenge 3: Isolate the physiological network of the
hospitalized patient from the external networks

We are approaching the problem by quantifying the surprisal of blood
tests in our hospital over the years before and during the pandemic.

Entropy is a quantitative measure of surprise

Entropy is a characteristic and invariant measure of a dynamical system,
like length or volume

We can apply these foundational ideas to hospitals, wards and clinicians



A feeling for =) p(x) log p(x) in information
® \We wish to have a measure of the surprise that we feel when we see the
next point in a time series, X,

® One way is the inverse of the probability p(x) or 1/ p(x,). Low probability
points generate big surprise.

® Think about the surprise of the next points — multiplying the 2 probabilities
seems extreme. Rather, it seems we should be adding.

® Thus let’'s use the log p(x), or, in this case, - log p(x) for the inverse

® \We can then estimate the surprise of the entire time series as the sum of
all the — log p(x).

® And to estimate the average, we can take the expectation, or

H(X) = —Eflog p(x)] = zmx)logp(xo



Can we apply these ideas to hospital care?
The patients and clinicians

® \We wish to know what the clinician thinks
® \We can get insight by what the clinician does, and when
® £.g., we can ask if the actions are surprising, like labs at 1AM

e \We can use:
O —In p as the surprise factor for a single event
O — > In p as the total surprise of a group of events, and
O —) pIn p as the average surprise over a period of time

® \We know p for vital signs, lab tests, medications, ...



p(labs, vital signs) by hour of day

CBC
BMP

CMP

Vital signs

GCS




Surprisal = - In p(labs, vital signs) by hour of day

CBC
BMP E .,
CMP
Vital signs

GCS

12AM 01AM 02AM 03AM 04AM 05AM 06AM 07AM 08AM 09AM 10AM 11AM 12PM O01PM 02PM 03PM 04PM 05PM 06PM 07PM 08PM 09PM 10PM 11PM



Surprisal = - In p(labs, vital signs) by day of week

CBC
BMP
CMP
Vital signs

GCS

Monday Tuesday Wednesday Thursday Friday Saturday Sunday



Can we apply these ideas to hospital care?
The ward

We will take another view, that of the ward as a dynamical
system



Kolmogorov and Sinai 1958 and 1959

® Employed Shannon’s entropy as an invariant measure of a
well-behaved dynamical system — a new concept was that new
values of a dynamical process could be estimated with a certainty
(or uncertainty) that was characteristic of the system itself

® Thus the entropy of Kand S is:

1 | _
Hge=—-1im lim lim — z p(ky.....k,)log p(ky.,....k,)

5—0 g—0 n—» N(Skl----kn

Hgo=1lim lim im(H,,, - H,).

0—0 g—0 n—x



Kolmogorov and Sinai 1958 and 1959

e The intuitive interpretation is that each new state in the evolving dynamical
system can be expected with greater or lesser uncertainty if one knows the
preceding states

e This degree of uncertainty is a invariant measure or characteristic of a
well-behaved dynamical system

e Is this thinking applicable to the hospital?
e Yes, if the hospital is a well-behaved dynamical system, an ergodic one
e A single bee in its lifetime will go everywhere that the hive does in a day

e The p(labs and vital signs) in a single bed in the NICU or on 4E will have
the same map as the whole ward.



Surprisal of Labs - NICU

Surprise

- o
troponin 6
lactate

Hgb

creatinine low

MN noon MN



Surprisal of labs — NICU Bed B09

P Surprise
troponin 6
lactate
Hgb
creatinine low

MN noon MN



Surprisal of labs — 4East

SSSSS SO Surprise
CRP j high
troponin
lactate
Hgb
creatinine low

MN - noon - MN



Surprisal of labs — 4East Bed 3A

o b S e Surprise
CRP ~ high
troponin
lactate
Hgb
creatinine low

MN noon MN



Are those maps the same?

® \We need a measure of the difference between two entropies

® This is called the mutual entropy or Kullback-Leibler divergence.
® |t amounts to the difference in - In p, but is written:

oD =->plnpAq

e |f there is no difference, then D, =0.

oD  p=NICU B9 and q=NICU: 0.0258

oD p=4East 3A and g=4East: 0.0061

oD  p=NICU and g=4East: 0.3307

oD  p=4Eastand q=NICU: 0.6175



Can we apply these ideas to hospital care?
The hospital

Can we consider the hospital a well-behaved dynamical system?
Intuitions:

The surprisal maps should look the same throughout the hospital



Surprisal of labs by hour — UVa Hospital

Surprisal of labs by day of week ALL LABS : Order Time

WHITE BLOOD CELL COUNT]
HEMOGLOBIN|

HEMATOCRIT]

PLATELET COUNT)

PROTIME|

PROTIME INR]

PHOSPHORUS|

MAGNESTUM

PARTIAL THROMBOPLASTIN TIME|
caLcium

CHLORIDE|

sopbrum

GLUCOSE

BLOOD UREA NITROGEN

co2|

CREATININE|

POTASSIUM

AST (GOT)|

ALT (GPT)
ALKALINE PHOSPHATASE
TOTAL BILIRUBIN|

ALBUMIN|

TOTAL PROTEIN
NEUTROPHILS PERCENT|
BAND PERCENT]

LACTIC ACID|

TROPONIN 1|

PO2

OXYGEN SATURATION

FI02

BICARBONATE

BASE EXCESS)

PH ARTERIAL|

PCO2

HEMOGLOBIN (CHEM))|
HEMATOCRIT (CHEM)
SODIUM (WHOLE BLOOD)
GLUCOSE (WHOLE BLOOD))|
POTASSIUM (WHOLE BLOOD)

12AM O1AM O02AM 03AM 04AM O05AM 06AM O07AM O08AM 09AM 10AM 11AM 12PM O1PM 02PM 03PM 04PM OS5PM 06PM 07PM 08PM 09PM 10PM  11PM



Surprisal of lab by hour — 4East

Surprisal of labs by day of week- dept: UVHE 4EAS : Order Time

HEMOGLOBIN (CHEM)
HEMATOCRIT (CHEM)
SODIUM (WHOLE BLOOD)
GLUCOSE (WHOLE BLOOD))|
POTASSIUM (WHOLE BLOOD)

12AM O1AM 02AM O03AM 04AM O05AM 06AM 07AM 08AM 09AM 10AM 11AM 12PM O1PM 02PM 03PM 04PM 05PM 06PM 07PM 08PM 09 PM 10 PM




Surprisal of labs by hour - NICU

Surprisal of labs by day of week- dept: UVHE NICU : Order Time

HEMOGLOBIN (CHEM)
HEMATOCRIT (CHEM)
SODIUM (WHOLE BLOOD)
GLUCOSE (WHOLE BLOOD)

POTASSIUM (WHOLE BLOOD)
12AM O1AM 02AM 03AM O04AM O05AM 06AM 07AM O08AM 09AM 10AM 11 AM 12PM 01 PM 02PM  03PM 04 PM 05PM  06PM 07 PM 08 PM 09 PM




Surprisal of labs by hour - ED

Surprisal of labs by day of week- dept: UVHE ED : Order Time

WHITE BLOOD CELL COUNT]
HEMOGLOBIN
HEMATOCRIT]

PLATELET COUNT]
PROTIME]

PROTIME INR)|
PHOSPHORUS|
MAGNESIUM

PARTIAL THROMBOPLASTIN TIME
caLcium

CHLORIDE

sobrum

GLUCOSE|

BLOOD UREA NITROGEN
coz

CREATININE

POTASSIUM

AST (GOT)

ALT (GPT)

ALKALINE PHOSPHATASE,
TOTAL BILIRUBIN
ALBUMIN

TOTAL PROTEIN
NEUTROPHILS PERCENT]
BAND PERCENT)

LACTIC ACID

TROPONIN 1|

PO2

OXYGEN SATURATION,
FI02

BICARBONATE

BASE EXCESS]

PH ARTERIAL|

PCO2]

HEMOGLOBIN (CHEM),
HEMATOCRIT (CHEM)|
SODIUM (WHOLE BLOOD)
GLUCOSE (WHOLE BLOOD)
POTASSIUM (WHOLE BLOOD)),

12AM O1AM 02AM 03AM O04AM OSAM 06AM O7AM O08AM 09AM 10AM 11AM 12PM OL1PM 02PM 03PM 04PM O05PM 06PM 07PM 08PM 09 PM 10 PM




Surprisal: By lab test

Surprisal of abs by hour of day bylab - PH ARTERIAL : Order Time

WiHE TvRol

ke sTicyl

uvie picyf

e Nvic

vk Nicy)

uvHe micul

ke oy

UVHE 50

UVHE 7ECH

UvHe e

UVHE SECH

e 3|

12 AM 01 AM 02 AM 03 AM 04 AM 05 AM 06 AM 07 AM 08 AM 05 AM 10 AM 11 AM 12 PM 01 PH 02 PM 03 PM 04 PH 05 PM 06 PM 07 PH 0B PM 03 PM 10 PH 11 PM

Arterial blood gas

A

Surprisal of labs by hour of day bylab - CRP : Order Time

Ve Teveol

e

Ve PICU)

wure icy|

Ve Nicyl

Ve Micy)

UVHE 7ECH]

UVHE 6ECh

UVHE SECH]

UVHE 3ECH]

12 AM 01 AM 02 AM 03 AM 04 AM 05 AH 06 AM 07 AM 0B AM 03 &M 10 AM 11 AN 12 PM O PM G2 PH 03 PM 04 PM 05 PH 06 PH 07 PM 08 PH 03 PH 10 PM 11PM

C-reactive protein

Surprisal of labs by hour of day bylab - PROTIME : Order Time

12 AM 01 AM 02 AM 03 AM 04 AM 05 AM 06 AM 07 AM 0B AM 09 AM 10 AM 11 AM 12 PM 01 PH G2 PH 03 PM 04 PM 05 PM 06 PM 07 PH 08 PH 09 PM 10 PM 11 PM

Prothrombin time



Surprisal: By day of admission

Surprisal of labs by hour of day bylab 1st Day - 4East : Order Time

PH ARTERIAL

CREACTIVE PROTEIN

LacTIc A

Jasgow Coma Scale Totl

BaND PERCENT]

TROPONIH 1

TOTAL BILIRUEIN

eromie]

HEHOGLOBIN

CREATININE]

12 AMOL AH 02 AM O3 AMI04 AV 05 AM 06 AH 07 AN 08 AM0S AM 10 AM L1 &M 12 P¥ 01 PH 02 PM 03 P14 02 PM 05 PH 06 PHH 07 P 03 PH 09 PHH 10 PM 11 PH

Admission

Surprisal of labs by hour of day bylab 2nd Day - 4East : Order Time

PH 2RTERIAL

(CREACTIVE PROTEIN

Lacric acto)

Glasgow Coma Scale Ttal

BAID PERCENT

RopoNH |

TOTAL BILIRUEBIN

eROTIYE]

HEMOGLOBIN

CREATININE]

12 AM01 AM 02 AMO3 4404 AM S AH 06 AH 7 A 0B AHOS AM 10 AM 11 AM 12 PH 01 PM 02 PH 03 P 04 PH 05 P 06 PH 07 PH 08 PIY 03 P 10 PM 11 PH

First hospital day

Surprisal of labs by hour of day bylab 3rd Day - 4East : Order Time

PH ARTERIA

CREACTIVE PROTEIN

Lacrc acto)

Gasgon Come Scale Tota

BAND PERCENT

TRopon |

TOTAL BILIRUBIY

PROTIVE]

HEMOGLOBIN

cReaTIINE|

52 AMOL AMO2 AM3 AMOZ AMOS AM U5 AM 07 AM 08 AM 03 AM 10 AM 11 AM 12 PM 01 P 02 PM 03 P 04 P 05 PI 08 PH 07 PIM 08 PM 0 P 10 P 11 P

Second hospital day



Pediatrics

e @ @



Max
All

ED
ICU
Wards



Summary

The ideas of network physiology can be extended by
analysis of time series of new parameters identified by
highly comparative time-series analysis

There are non-physiologic networks of importance in the
care of the hospital patient



