Biological Rhythms and Evolving Functional Brain Networks

Klaus Lehnertz

with Timo Bröhl & Thorsten Rings

for Complex Systems

Dept. of Epileptology
 Neurophysics Group

University of Bonn, Germany

Helmholtz-Institute for Radiation- and Nuclear Physics

Biological Rhythms

period lengths of biological rhythms extend over 11 orders of magnitude

θυμέ, θύμ' ἀμηχάνοισι κήδεσιν κυκώμενε, ἄνα δέ, δυσμενέων δ' ἀλέξευ προσβαλὼν ἐναντίον στέρνον, ἐν δοκοῖσιν ἐχθρῶν πλησίον κατασταθείς ἀσφαλέως· καὶ μήτε νικῶν ἀμφαδὴν ἀγάλλεο μηδὲ νικηθείς ἐν οἵκωι καταπεσὼν ὀδύρεο. ἀλλὰ χαρτοῖσίν τε χαῖρε καὶ κακοῖσιν ἀσχάλα μὴ λίην· γίνωσκε δ' οἶος ῥυσμὸς ἀνθρώπους ἔχει

Archilochos (680 – 645 BC)

My Soul, my Soul, all disturbed by sorrows inconsolable, Bear up, hold out, meet front-on the many foes that rush on you Now from this side and now that, enduring all such strife up close, Never wavering; and should you win, don't openly exult, Nor, defeated, throw yourself lamenting in a heap at home, But delight in things that are delightful and, in hard times, grieve Not too much – appreciate the rhythm that controls men's lives.

> other translation: recognize what rhythm governs man

e.g. F. Halberg Chronobiology. Annu. Rev. Physiol. 31, 675, 1969.; J. Aschoff. Biological Rhythms. 1981

Biological Rhythms

- ultradian (90 min.)
- circadian (24 h.)
- circaseptan (7 d.)
- infradian (28-32 d.)
- circannual (1 yr.)
- 7-years

metabolism, food intake, sexuality, hormones, sleep, jet-lag, temper, ...

(JA Mohawk, CB Green, JS Takahashi JS Central and peripheral circadian clocks in mammals". Annu. Rev. Neurosci. 35: 445–62, 2013) "the Kai transcription-translation cycle may be similar to that of a pendulum and an escapement mechanism that sustains the pendulum oscillation" (M Nakajima et al., Science 2005)

Biological Rhythms and Brain Dynamics

impact of circadian and various ultradian rhythms known for > 50 years

mostly EEG studies

limitations:

- visual analyses
- spectral properties of EEG (modulation of classical frequency bands)
- continuous recordings rare
- limited spatial sampling

e.g. J.N. Mills, Human Circadian Rhythms. Physiol. Rev. 46, 128–171 (1966); N. Kleitman, Basic Rest-Activity Cycle-22 Years Later. Sleep 5, 311–317, 1982

Long-Term Recordings of Brain Dynamics

- continuous recordings (days – years)
- invasiveness (patients only)
- spatial resolution
- technical limitations
 (data size, storage, handling)

NeuroTec & Wyss Center

NeuroTec & CSEM & ESA

©UNEEG medical

EEG and OPM-MEG

Impact of Biological Rhythms

Lake Como School of Advanced Studies, 24 - 29 July 2022

Biological Rhythms and Brain Network Dynamics

impact of biological rhythms on ...

- ... dynamics of individual brain regions (vertices → univariate time series analyses)
- ... dynamics of interactions between brain regions (edges \rightarrow bivariate time series analyses)

... dynamics of evolving functional brain networks (network properties, from global to local)

Functional Brain Networks

recordings of brain dynamics (EEG, MEG, fMRI, ...)

e.g. Bullmore & Sporns, Nat. Rev. Neurosci. 10, 186, 2009; KL et al., Physica D 267, 7, 2014

sensor

Characterizing Vertex Dynamics

statistical properties (mean, variance, skewness, kurtosis, ...)

linear time series analysis techniques (power spectrum-derived characteristics, autocorrelation, ...)

nonlinear time series analysis techniques (dimensions, entropies, Lyapunov exponents, ...)

analysis techniques from statistical physics (drift, diffusion, higher-order Kramers-Moyal coefficients, ...)

e.g. Box & Jenkins Time Series Analysis: Forecasting and Control., 1976; Boashash, Time Frequency Signal Analysis And Processing (2003); Kantz & Schreiber, Nonlinear Time Series Analysis, 2003; Tabar, Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes, 2019

nplex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes, 2019 Lake Como School of Advanced Studies, 24 - 29 July 2022

Characterizing Edge Dynamics

linear time series analysis techniques (cross-correlation, coherence, ...)

nonlinear time series analysis techniques (synchronization-based techniques, information-theory-based techniques, ...)

analysis techniques from statistical physics (higher-order Kramers-Moyal coefficients, ...)

e.g. Lütkepohl, Introduction to Multiple Time Series Analysis (1993);

Pikovsky, Rosenblum, Kurths, Synchronization - A universal concept in nonlinear sciences (2001); L Rydin Gorjao, J Heysel, KL, MRR Tabar. Analysis and data-driven reconstruction of bivariate jump-diffusion processes. Phys Rev E 2019

Characterizing Functional Brain Networks (II)

clustering coefficient, average shortest path length, assortativity, synchronisability, ...

communities, motifs, modularity

. . .

degree, degree distribution, centralities for vertices and edges

Long-Term Recordings of Brain Dynamics

exemplary data sets

A

scalp EEG male subject, 81 y, no epilepsy recording duration: 7 d 19 sensors (10-20-system) sampling rate: 256 Hz

Β

invasive EEG male subject, 55 y, epilepsy recording duration: 14 d 88 sensors (frontal and temporal) sampling rate: 250 Hz

Long-Term Recordings of Brain Dynamics

steps of analysis

freq. band: 1 - 45 Hz; moving window (20 s \rightarrow approx. stationary)

node dynamics:

statistical moments \rightarrow Gaussian distributed? variance (σ), skewness (s), kurtosis (k)

edge dynamics:

(non-redundant) pairwise strength of interactions

- mean phase coherence (R)
- correlation (ρ)

 \rightarrow functional connectivity

network characteristics:

clustering coefficient and centrality (nodes and edges)

Lomb-Scargle periodograms of resulting time series

KL et al., Front. Netw. Physiol. 2021

Impact of Biological Rhythms – Results I

scalp EEG (A)

- periods: dominant: 24 h (+ 12, 8, 6, 4 h, 90 min, 60 min)
- location: variable, mostly fronto-central
- daytime strong deviation from Gaussianity

iEEG (B)

- periods: dominant: 24 h (+ 12, 8, 4 h)
- location: variable
- daytime and nighttime strong deviation from Gaussianity

KL et al., Front. Netw. Physiol. 2021

Lake Como School of Advanced Studies, 24 - 29 July 2022

Impact of Biological Rhythms – Results II

scalp EEG (A)

- periods:
 dominant: 24 h + triplets (17-19 h + 27-30 h)
 (+ 3.5 and 12 h)
- different impact on short- and long-range connections
- global synchrony weaker during nighttime

iEEG (B)

- periods:

dominant: 24 h + triplets (17-19 h + 27-30 h) (+ 5+8 h (*R*), 4+7 h (ρ)

- different impact on short- and long-range connections
- global synchrony weaker during nighttime
- diurnal cycle: R 3-6 h ahead of ρ !

KL et al., Front. Netw. Physiol. 2021

Lake Como School of Advanced Studies, 24 - 29 July 2022

Impact of Biological Rhythms – Results III

scalp EEG (A) and iEEG (B)

different impact of biological rhythms dependent on network construction $(R \text{ or } \rho)$

- periods (scalp EEG): 24 h + triplets (21-28 h)
- periods (iEEG): 24 h + ultradian rhythms triplets and quartets

centralities: nodes: scalp EEG: central (C) und occipital (O) left frontal (F) and right mesial (M) iEEG:

on Network Physiology (ISINP) Lake Como School of Advanced Studies, 24 - 29 July 2022

KL et al., Front. Netw. Physiol. 2021

Summary: Impact of Biological Rhythms

suitability and reliability of analysis techniques that assume Gaussian distributed data

reproducibility of studies on

- (patho-)physiological synchronization
- functional connectivity (EEG/MEG/fMRI)
- functional brain networks (EEG/MEG/fMRI)

interpretability of findings from repeated measurements/long-term recordings

impact of infradian rhythms (age-dependent changes) largely unknown

KL et al., Front. Netw. Physiol. 2021

