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Circulating Redox Changes
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Energy State is Communicated by
Redox Indicators

e Shared co-factors: pyridine nucleotides,
adenine nucleotides, CoA esters and ROS

e Mitochondrial metabolism

e Circulating metabolites
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Co-Factors Interact and are Linked

ADP or the ATP/ADP ratio drives oxidative
phosphorylation

Dehydrogenase equilibrium restores redox as
NADH electrons enter electron transport

Acetyl CoA production sustains electron
transport

Excess fuel produces ROS, drives NNT, impacts
thiol redox state




Redox Changes Induce ROS
Changes that Impact Thiol Redox




ROS are Produced at High NADH

Factor X
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NNT a ROS-Scavenging Enzyme
Driven by the Proton Gradient
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Circulating Redox Changes

Starvation
Lean vs obese or high fat diet

Dean Jones: blood thiol redox in diabetes,
aging and cancer becomes oxidized

Response to fuels

Lean and obese human subjects undergoing
glucose tolerance test (collaboration with
Human Metabolism Core directed by Nawfal
Isfan)




H,O, Production Rates in Intact Organ

perfused liver data were obtained by methanol titration of

catalase Compound 1. Data from Oshino et al (1973).

Production Rate

Substrate or inhibitor
nmol H,O,/min per g liver

L-Lactate, 2 mM; pyruvate, 0.3 mM 49
+ antimycin, 8 uM 53
+ octanoate, 0.3 mM 170
+ oleate, 0.1 mM 66

Oshino et al (1973) Arch. Biochem. Biophys. 154, 117-131



Intracellular Fuels Impact Cellular
Redox and ROS.
Do External Circulating Changes affect

Intracellular Redox?




ROS Production in Hepatocytes
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Hepatic ROS Production
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Adipocyte ROS Generation
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Yes External Redox Can Control
Cellular ROS Production.

Do Changes in Redox or ROS Alter

Function?




Hepatic Glucose Production
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Adipocyte Lipolysis
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ROS Required for Lipid Synthesis
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Krawczyk et al, 2012 PLoSone




Effect of [s-OHB and ROS Removal on
Insulin Secretion from INS-1 Cells
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Mitochondrial bioenergetics link to
insulin responses via redox biology

* Under the normal reducing conditions of the
intracellular redox environment, phosphatase
tone is elevated, ensuring that net kinase activity
Is suppressed and specific protein targets are

dephosphorylated.

An oxidative shift in the redox environment
lowers phosphatase tone to a level which allows
for kinase activity to dominate and thus leads to
phosphorylation of target proteins.

Trends Endocrinol Metab. 2012 Mar;23(3):142-53. Epub 2012 Feb 2. Fisher-Wellman KH, Neufer PD.




Cysteines are Modlified by ROS

intermolecular disulfide glutathionylation
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Summary and Implications

Fuels and exogenous agents change redox and can
generate ROS in many organs

Redox couples are transported among cells via the
circulation and thus interconnect all organs

ROS and redox changes impact function in an organ-

specific manner

Environmental agents can increase ROS and insulin
secretion in the absence of a stimulatory fuel

. Such ROS constitutes a misleading signal




Certain Exogenous Compounds
can also Induce ROS




H,O, Increases Insulin Secretion
in INS-1 Cells
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ROS is Generated by MOG
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Iron Induces Insulin Secretion in
INS-1 Cells

Transferrin
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Ali Al-Saleh Thesis, unpublished
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Artificial Sweeteners Affect Insulin
Secretion in Dissociated Rat Islets
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Agents that Cause Insulin Secretion in the
Absence of a Stimulatory Fuel by
Generating ROS

MQOG, a lipid food emulsifier and preservative
Saccharin, an artificial sweetener
lron, an essential mineral

Bisphenol A, contained in plastics




ROS are Produced at High NADH

Factor X




False Signals
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