The Redox Network: Master Regulator of Metabolism

Barbara E. Corkey Obesity Research Center Boston University School of Medicine

Circulating Redox Changes Frequently and Impacts Function

Liver Glucose Production Fat Cell Lipid Handling

Master Metabolic Regulators (REDOX Indicators)

> ♥ ß-Cell Insulin Secretion

Energy State is Communicated by Redox Indicators

- Shared co-factors: pyridine nucleotides, adenine nucleotides, CoA esters and ROS
- Mitochondrial metabolism
- Circulating metabolites

NADH used by ETC is replenished from Acetyl CoA

Co-Factors Interact and are Linked

- ADP or the ATP/ADP ratio drives oxidative phosphorylation
- Dehydrogenase equilibrium restores redox as NADH electrons enter electron transport
- Acetyl CoA production sustains electron transport
- Excess fuel produces ROS, drives NNT, impacts thiol redox state

Redox Changes Induce ROS Changes that Impact Thiol Redox

NNT a ROS-Scavenging Enzyme Driven by the Proton Gradient

Circulating Redox Changes

Starvation

- Lean vs obese or high fat diet
- Dean Jones: blood thiol redox in diabetes, aging and cancer becomes oxidized
- Response to fuels
- Lean and obese human subjects undergoing glucose tolerance test (collaboration with Human Metabolism Core directed by Nawfal Isfan)

H₂O₂ Production Rates in Intact Organ

Perfused liver data were obtained by methanol titration of catalase Compound I. Data from Oshino et al (1973).

Substrate or inhibitor	Production Rate
Substrate of millerter	nmol H ₂ O ₂ /min per g liver
L-Lactate, 2 mM; pyruvate, 0.3 n	nM 49
+ antimycin. 8 μ M	75
+ octanoate, 0.3 mM	170
+ oleate, 0.1 mM	66

Oshino et al (1973) Arch. Biochem. Biophys. 154, 117-131

Intracellular Fuels Impact Cellular Redox and ROS. Do External Circulating Changes affect Intracellular Redox?

ROS Production in Hepatocytes

GSH / GSSG

oxidized

oxidized

Hepatic ROS Production

Laura Nocito

Adipocyte ROS Generation

Tova Meshulam

Yes External Redox Can Control Cellular ROS Production. Do Changes in Redox or ROS Alter Function?

Hepatic Glucose Production

Laura Nocito, unpublished

Adipocyte Lipolysis

Tova Meshulam. unpublished

ROS Required for Lipid Synthesis

Krawczyk et al, 2012 PLoSone

Effect of S-OHB and ROS Removal on Insulin Secretion from INS-1 Cells

Mitochondrial bioenergetics link to insulin responses via redox biology

- Under the normal reducing conditions of the intracellular redox environment, phosphatase tone is elevated, ensuring that net kinase activity is suppressed and specific protein targets are dephosphorylated.
- An oxidative shift in the redox environment lowers phosphatase tone to a level which allows for kinase activity to dominate and thus leads to phosphorylation of target proteins.

Cysteines are Modified by ROS

Bachschmid FASEB J. 28: (2014)

Hunger, Satiety

Glycogen, Glucose

Liver

Release

Lipid Synthesis Metabolic REDOX

FatCell

Lipolysis

Circulating Master Metabolic REDOX Regulators (L/P, ß/A, SH/SS)

> ß-Cell Insulin, Glucagon Secretion

Summary and Implications

- 1. Fuels and exogenous agents change redox and can generate ROS in many organs
- Redox couples are transported among cells via the circulation and thus interconnect all organs
- 3. ROS and redox changes impact function in an organspecific manner
- 4. Environmental agents can increase ROS and insulin secretion in the absence of a stimulatory fuel
- 5. Such ROS constitutes a misleading signal

Certain Exogenous Compounds can also Induce ROS

H₂O₂ Increases Insulin Secretion in INS-1 Cells

ROS is Generated by MOG

MOG Stimulates Basal Secretion

Saadeh et al PLOSone e30200. Epub 2012 Jan 17

Iron Induces Insulin Secretion in INS-1 Cells

Ali Al-Saleh Thesis, unpublished

Artificial Sweeteners Affect Insulin Secretion in Dissociated Rat Islets

Ali Al-Saleh Thesis, unpublished

Agents that Cause Insulin Secretion in the Absence of a Stimulatory Fuel by Generating ROS

- MOG, a lipid food emulsifier and preservative
- Saccharin, an artificial sweetener
- Iron, an essential mineral
- Bisphenol A, contained in plastics

False Signals

Hunger, Satiety

Liver Glycogen, Glucose Release FatCell Lipolysis Lipid Synthesis

Circulating Master Metabolic REDOX Regulators (L/P, ß/A, SH/SS)

> Islet Insulin, Glucagon Secretion

Thank You