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Our results for the α band shown in Fig. 2 demonstrate that PD

patients show stronger brain lobe interactions than elderly con-
trols (EC). In addition, the interactions increase with disease
severity from PD-FoG to PD+FoG− and to PD+FoG+ for all
intra-lobe and inter-lobe links (Fig. 2c). This overall increase is
because of two factors: (i) higher levels of phase synchronization
(PS) of EEG amplitude−amplitude modulations for PD patients
(Fig. 2a), and (ii) brain lobe interactions are more pronounced in
PD patients than in EC (Fig. 2b). The increase is consistent across
all intra-lobe and inter-lobe interactions, since the PD+FoG+

group always yields the largest R × χ in the rank distribution in
Fig. 4, while the EC group always yields the smallest R × χ. Note
that for the PD+FoG+ and the EC group, the error bars calcu-
lated by a bootstrap approach never overlap. The values for the
PD-FoG and PD+FoG− groups always fall in between the
PD+FoG+ and the EC group, with the PD+FoG− group gen-
erally scoring above the PD-FoG group.

Furthermore, for all groups of subjects, the interactions within
the same lobe are strongest and more significant, as can be seen in
Fig. 2, where the diagonal elements of all matrices show the
highest values. Correspondingly, in the rank distributions in
Fig. 4, the first six ranks belong to intra-lobe interactions. Inter-
lobe interaction (i.e., the coupling between different lobes) is
consistently weaker than intra-lobe interaction, and depends on
whether lobes belong to the same brain hemisphere (higher
coupling strength) or different hemispheres. For example, cou-
pling between FML−POL (same hemisphere) is stronger than
POL−POR coupling (different hemispheres) across all groups
(Fig. 4).

Several EEG frequency bands have been shown to be affected
by Parkinson’s disease (PD) and in particular by freezing of gait
(FoG)14–17. Therefore, we repeated our analyses and obtained
results also for other physiologically-relevant frequency bands
ranging from low-frequency θ to high-frequency Γ waves. Com-
paring the brain lobe interaction networks for all five considered
EEG bands in Fig. 3, we observe a very consistent pattern across
all bands. In all cases, intra-lobe amplitude synchronizations (blue
nodes) are weakest for the EC group and strongest for the
PD+FoG+ group and inter-lobe amplitude synchronization (gray
links) follow the same pattern. The differences between the

PD+FoG− and PD+FoG+ groups, i.e., PD patients with FoG
symptoms who did not show and patients who did show FoG
during our experiments, are most pronounced for the higher
frequency bands (i.e., β, γ and Γ; Fig. 3). Particular noteworthy is
the observation that for the PD+FoG+ group, synchronization
between the frontal motor lobes (FML-FMR link) in the γ and Γ
frequency bands becomes stronger than most other intra-
hemisphere interactions (Fig. 3 and cp. Supplementary
Figs. S1−S4). Overall, these results indicate that the PD-related
increase in EEG amplitude synchronization occurs across all
frequency bands and is directly correlated to disease severity.

The observed increase in EEG amplitude synchronization with
PD is not only present during locomotion but also shows for
other motor tasks. Figure 5 depicts results of intra-lobe interac-
tion of the frontal motor lobe (FMR-FMR and FML-FML) for
each individual performing the normal walking part of the
experiments as well as standing still and hand tapping. There is a
general trend to higher EEG synchronization values for sicker
individuals and the strength of brain interactions are highly
correlated between the different motor tasks.

Discussion and conclusion
We analyzed EEG data from three PD groups with increasing
levels of disease severity and one group of age-matched elderly
controls. We focused on the “normal walking” state and other
non-locomotor tasks and identified EEG amplitude synchroni-
zation networks of same-band frequency interactions after dis-
tinguishing between physiological and spurious synchronization.
The degree of synchronization (strength of network links) in EEG
amplitudes shows a dramatic increase for PD patients in more
advanced stages of the disease. We also found that EEG ampli-
tude synchronization is similar in PD-FoG and PD+FoG−

although both groups are generally quite different in clinical
terms. This finding indicates that FoG risk can change on a daily
basis where cortical areas switch between ‘prone-to-FoG’ vs. non-
FoG states, and that this process could be monitored by EEG
synchronization networks.

Our results are independent of EEG frequency and consistent
across all studied bands from low-frequency θ to high-frequency
Γ waves. While previous studies have reported alterations in

Fig. 1 Construction of brain wave synchronization matrices based on EEG electrode position. a Data were recorded by a 32-channel EEG montage
according to the international 10−20 standard system (the four midline electrodes Fz, Cz, Pz, Oz, and the two reference electrodes M1 and M2 were
excluded from the analysis). Electrodes were grouped according to different brain lobes (as indicated by the dashed lines): frontal motor left—FML
(including electrodes FP1, F7, F3, FC5, and C3); frontal motor right—FMR (FP2, F8, F4, FC6, and C4); temporal left—TL (FT9, T3, TP9, and T5); temporal
right—TR (FT10, T4, TP10, and T6); parietal occipital left—POL (CP5, P3, O1, and PO9); and parietal occipital right—POR (CP6, P4, O2, and PO10).
b Matrix of the averaged synchronization indexes hRj1 ;j2 iν for all combinations of α-amplitude signals j1 and j2 from all 26 electrodes of a single PD+FoG+

subject. Averaging was done over all normal walking segments ν. Note that we exclude electrodes with high impedance or high standard deviations from
our analysis (e.g., the two dark blue lines in panel (b) corresponding to electrode CP6). c The matrix elements of panel (b) are averaged according to the
definition of brain lobes shown in (a) to obtain a brain wave synchronization matrix. Matrix elements that correspond to the same electrode interaction
(i.e., the diagonal elements in (b)) have been excluded from the average.
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Our results for the α band shown in Fig. 2 demonstrate that PD
patients show stronger brain lobe interactions than elderly con-
trols (EC). In addition, the interactions increase with disease
severity from PD-FoG to PD+FoG− and to PD+FoG+ for all
intra-lobe and inter-lobe links (Fig. 2c). This overall increase is
because of two factors: (i) higher levels of phase synchronization
(PS) of EEG amplitude−amplitude modulations for PD patients
(Fig. 2a), and (ii) brain lobe interactions are more pronounced in
PD patients than in EC (Fig. 2b). The increase is consistent across
all intra-lobe and inter-lobe interactions, since the PD+FoG+

group always yields the largest R × χ in the rank distribution in
Fig. 4, while the EC group always yields the smallest R × χ. Note
that for the PD+FoG+ and the EC group, the error bars calcu-
lated by a bootstrap approach never overlap. The values for the
PD-FoG and PD+FoG− groups always fall in between the
PD+FoG+ and the EC group, with the PD+FoG− group gen-
erally scoring above the PD-FoG group.

Furthermore, for all groups of subjects, the interactions within
the same lobe are strongest and more significant, as can be seen in
Fig. 2, where the diagonal elements of all matrices show the
highest values. Correspondingly, in the rank distributions in
Fig. 4, the first six ranks belong to intra-lobe interactions. Inter-
lobe interaction (i.e., the coupling between different lobes) is
consistently weaker than intra-lobe interaction, and depends on
whether lobes belong to the same brain hemisphere (higher
coupling strength) or different hemispheres. For example, cou-
pling between FML−POL (same hemisphere) is stronger than
POL−POR coupling (different hemispheres) across all groups
(Fig. 4).

Several EEG frequency bands have been shown to be affected
by Parkinson’s disease (PD) and in particular by freezing of gait
(FoG)14–17. Therefore, we repeated our analyses and obtained
results also for other physiologically-relevant frequency bands
ranging from low-frequency θ to high-frequency Γ waves. Com-
paring the brain lobe interaction networks for all five considered
EEG bands in Fig. 3, we observe a very consistent pattern across
all bands. In all cases, intra-lobe amplitude synchronizations (blue
nodes) are weakest for the EC group and strongest for the
PD+FoG+ group and inter-lobe amplitude synchronization (gray
links) follow the same pattern. The differences between the

PD+FoG− and PD+FoG+ groups, i.e., PD patients with FoG
symptoms who did not show and patients who did show FoG
during our experiments, are most pronounced for the higher
frequency bands (i.e., β, γ and Γ; Fig. 3). Particular noteworthy is
the observation that for the PD+FoG+ group, synchronization
between the frontal motor lobes (FML-FMR link) in the γ and Γ
frequency bands becomes stronger than most other intra-
hemisphere interactions (Fig. 3 and cp. Supplementary
Figs. S1−S4). Overall, these results indicate that the PD-related
increase in EEG amplitude synchronization occurs across all
frequency bands and is directly correlated to disease severity.

The observed increase in EEG amplitude synchronization with
PD is not only present during locomotion but also shows for
other motor tasks. Figure 5 depicts results of intra-lobe interac-
tion of the frontal motor lobe (FMR-FMR and FML-FML) for
each individual performing the normal walking part of the
experiments as well as standing still and hand tapping. There is a
general trend to higher EEG synchronization values for sicker
individuals and the strength of brain interactions are highly
correlated between the different motor tasks.

Discussion and conclusion
We analyzed EEG data from three PD groups with increasing
levels of disease severity and one group of age-matched elderly
controls. We focused on the “normal walking” state and other
non-locomotor tasks and identified EEG amplitude synchroni-
zation networks of same-band frequency interactions after dis-
tinguishing between physiological and spurious synchronization.
The degree of synchronization (strength of network links) in EEG
amplitudes shows a dramatic increase for PD patients in more
advanced stages of the disease. We also found that EEG ampli-
tude synchronization is similar in PD-FoG and PD+FoG−

although both groups are generally quite different in clinical
terms. This finding indicates that FoG risk can change on a daily
basis where cortical areas switch between ‘prone-to-FoG’ vs. non-
FoG states, and that this process could be monitored by EEG
synchronization networks.

Our results are independent of EEG frequency and consistent
across all studied bands from low-frequency θ to high-frequency
Γ waves. While previous studies have reported alterations in

Fig. 1 Construction of brain wave synchronization matrices based on EEG electrode position. a Data were recorded by a 32-channel EEG montage
according to the international 10−20 standard system (the four midline electrodes Fz, Cz, Pz, Oz, and the two reference electrodes M1 and M2 were
excluded from the analysis). Electrodes were grouped according to different brain lobes (as indicated by the dashed lines): frontal motor left—FML
(including electrodes FP1, F7, F3, FC5, and C3); frontal motor right—FMR (FP2, F8, F4, FC6, and C4); temporal left—TL (FT9, T3, TP9, and T5); temporal
right—TR (FT10, T4, TP10, and T6); parietal occipital left—POL (CP5, P3, O1, and PO9); and parietal occipital right—POR (CP6, P4, O2, and PO10).
b Matrix of the averaged synchronization indexes hRj1 ;j2 iν for all combinations of α-amplitude signals j1 and j2 from all 26 electrodes of a single PD+FoG+

subject. Averaging was done over all normal walking segments ν. Note that we exclude electrodes with high impedance or high standard deviations from
our analysis (e.g., the two dark blue lines in panel (b) corresponding to electrode CP6). c The matrix elements of panel (b) are averaged according to the
definition of brain lobes shown in (a) to obtain a brain wave synchronization matrix. Matrix elements that correspond to the same electrode interaction
(i.e., the diagonal elements in (b)) have been excluded from the average.
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which in the present study is expressed by FMR−FML hyper
synchronization. Moreover, our hypothesis could be tested in
future studies, for example, by investigating the effect of the
dopaminergic medications on inter-regional network PS and by
comparing EEG networks during OFF and ON conditions. If
indeed confirmed, EEG network synchronization might become a
clinically relevant tool to monitor and evaluate medication intake
effects for PD patients. The present findings point to the possi-
bility that persons with PD who suffer from the FoG symptom
exhibit increased inter-regional network PS. However, as the
pathophysiology of FoG is largely unknown4, it is not clear
whether the potentially FoG-associated hyper synchronization is
consequential or causal to the symptom. Nonetheless, the
increased PS among this subgroup of persons with PD implies
that a more severe disease symptomatology leads to higher values
for the EEG network synchronization.

A limitation of the present study is the relatively small number
of participants in each of the study groups, which limits the

external validity of the present findings and warrants future
confirmation with larger groups of participants. It is also
important to note that in the present sample, scores on the
UPDRS-Part III scale are relatively low (see Table 2), particularly
for persons with PD who suffer from FoG in their OFF state (see,
e.g.,58,59). Future research should address whether the severity of
motor impairments in PD as expressed by the UPDRS-III scores
are reflected by the level of inter-regional cortical PS. Distin-
guishing PD patients particularly through the occurrence or
absence of FoG, the present results indicate that inter-regional
cortical PS is higher in those who suffer from FoG as compared to
those who do not. Interestingly, it appears that cortical PS can be
considered as a marker of FoG intermittent risk, as those who
exhibited FoG episodes during the experimental session showed
higher PS as compared to freezers who were spared from the
symptom in that particular time.

As more EEG data recorded during gait in PD patients and in
particular during FoG epochs become available, future work could

Fig. 3 Physiological networks of brain lobe interactions for different EEG frequency bands. The brain lobe interaction matrices R × χ are used to
construct physiological networks for each frequency band and for each group during normal walking (cp. Fig. 2c for α−α interactions for all four groups).
Network nodes correspond to the six brain lobes and the color-coding of the nodes is according to the intra-lobe interaction values obtained from the
diagonal matrix elements of the lobe-averaged R × χ matrices. Weighted network links reflect inter-lobe interaction as given by the value of the non-
diagonal matrix elements, and darker gray color and thicker lines represent stronger interactions. Subjects with Parkinson’s disease (PD) generally exhibit
higher levels of brain lobe interactions, and the highest values are observed for PD+FoG+ consistently across all EEG frequency bands.
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- Freezing of Gait = FoG, Parkinson’s disease = PD

FoG is a:

- significant risk factor for falls and injuries
- one of the most disabling symptoms of PD
- not universal (only about 50% of PD)
- less frequent in women
- less frequent in PD with pronounced tremor

FoG trigger (most common):

- turns
- narrow passage
- gait initiation
- uneven floor (carpet, rug)

FoG – Overview

• not clear why some PD patients show FoG while others do not
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Random stride-to-stride fluctuations in PD

at evaluating fall risk in PD. In addition, these results dem-
onstrate that levodopa has a positive, beneficial effect on
stride-to-stride variability and suggest that dopamine net-
works contribute to the control gait variability. Nonetheless,
even in the on state, in the treated condition when motor
performance is optimal, the ability to regulate stride-to-stride
variability is apparently further increased among PD subjects
who fall. This finding suggests the possibility of damaged
and exaggerated impairment of “internal clock” function in
PD fallers.

D. Beyond the first and second moments: Fractal
analysis of PD gait

Above, we described the changes in gait in PD that are
related to the mean stride length or measures of gait variabil-
ity, typically quantified as the standard deviation !SD" or the
coefficient of variation !CV" of the stride time !SD normal-
ized with respect to the first moment, the mean value". While
these gait features are important and describe much of the
observable changes in PD, they fail to account for and ex-
plain a more subtle alteration in the gait of PD. In particular,
they do not examine the dynamics of gait, i.e., how gait
changes over time, from one stride to the next within a given
walk. Two time series can have identical means and variance
but with very different ordering or dynamics !e.g., see http://
www.physionet.org/tutorials/ndc/". There are many ways to
capture and quantify such properties;38,42,46,53,68–76 however,
in this review, we focus on the fractal property of gait.

In healthy adults, gait appears to be relatively unvarying.
That is, during steady-state walking, each stride looks like an
identical copy of the one before. To a large degree, this is
correct. However, closer examination reveals small and
subtle stride-to-stride changes in the gait pattern, even in
healthy young adults. For example, the stride time, i.e., the
gait cycle duration or the stride interval, fluctuates about its
mean !see Fig. 3"; for healthy adults, the CV in the stride
time is about 2% !the exact number depends on specifics of

the protocol and signal processing methods". For a long time,
it was thought these small fluctuations are essentially white
noise. It was further assumed that there is no physiological
meaning in these small stride-to-stride changes, other than
those related to the size of the fluctuations, i.e., gait variabil-
ity, as discussed above. However, a number of studies over
the last decade have consistently demonstrated that there is
information in the dynamics of these stride-to-stride fluctua-
tions. In fact, not only is the value of the stride time related
to neighboring stride times !i.e., short-range scaling", it turns
out that a given stride time is related—at least on a statistical
basis—to stride times ten and hundreds of strides later. In
other words, stride-to-stride fluctuations are not simply ran-
dom changes about the mean. Instead, they reflect “long-
term” memory or long-range correlations in the stride time
and suggest that the control of the stride time is regulated, to
some degree, over hundreds of strides.

This unexpected fractal-like property of gait can be
quantified using a number of different techniques. One popu-
lar method is a modified random walk analysis, termed as
detrended fluctuation analysis !DFA".77–79 In this case, we
calculate a scaling or fractal exponent ! that measures how
the fluctuation size F!n" scales depending on the time scale
or the window of observation !n". If the fractal scaling ex-
ponent is "0.5 and less than or equal to 1.0, the time series
is said to be self-similar with long-range correlations. An !
of 0.5, on the other hand, reflects white noise and an absence
of scaling and the fractal behavior. Figure 3 shows an ex-
ample of the fractal scaling of the stride time in a healthy
young adult. Similar results have been observed among
groups of healthy young adults. Stride interval fluctuations at
one time scale were statistically similar to those at multiple
other time scales. Subsequent studies using a variety of dif-
ferent techniques have confirmed the presence of long-range
correlations and fractal-like scaling in the gait of healthy
young adults !see below", even during slow walking and dur-
ing running.80–87

(a) (b)

FIG. 3. !a" Example of time series of stride time during 1 h of walking in a healthy young adult at slow, normal, and fast walking rates, and below, after the
fast data set is randomly shuffled. !b" While there are subtle effects of gait speed, DFA shows that there is fractal scaling at all three gait speeds. When the
data are randomly reordered !shuffled", the slope becomes 0.5, reflecting white noise and an absence of fractal scaling #From J. M. Hausdorff, P. L. Purdon,
C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, “Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations,” J.
Appl. Physiol. 80, 1448 !1996". Copyright ©1996 by American Physiological Society. Reprinted by permission of American Physiological Society$. Data can
be downloaded from www.physionet.org. Strictly speaking, Figs. 3–5 should be plotted as discrete points rather than points joined with lines. The points are
joined together as a continuous line, however, since this makes it somewhat easier to visualize the dynamics.
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data. If the data are “well behaved” !e.g., the effects of trends
are small", the DFA scaling index is linearly related to other
fractal scaling indices such as the Hurst exponent and scaling
indices derived from the autocorrelation function or Fourier
analysis !i.e., 1 / f scaling".100,103,105,106 However, DFA elimi-
nates trends in the time series and therefore can avoid the
spurious detection of correlations that are artifacts of nonsta-
tionarities. DFA is a modified random-walk analysis that
makes use of the fact that a long-range !power-law" corre-
lated time series can be mapped to a self-similar process by
simple integration. Methodological details have been pro-
vided above and elsewhere.77,78,97,103,104 Very generally,
healthy physiologic systems have fractal scaling indices of
around 0.8–1.0 !depending on the specifics" and values
closer to 0.5 reflect a deviation from the healthy state and
more random, less ordered dynamics.77,78,97,103,104 Previous
work has shown that the fractal scaling index provides a
measure of subtle changes in underlying gait dynamics; this
measure separates healthy young from healthy older adults,
even when the magnitude of the stride-to-stride variability is
unchanged.97

A number of previous studies have examined the prop-
erties of the DFA, in general,103,105,107,108 and its application
to gait, more specifically.77,78,97,104 It is helpful to note that
DFA is relatively unchanged if a small number of points are
deleted;107 thus, the automated removal of the turns and
stitching together of the time series generally do not have a
large effect on DFA derived scaling indices. Similarly, DFA
scaling of the stride time is relatively independent of the data
collection method. Ivanov et al.74 recently reported that DFA
derived scaling indices of gait obtained using an accelerom-
eter when healthy adults walk on a very long straight path
are similar to those of healthy subjects who walked on an
oval track while wearing footswitches.79 Similar scaling val-
ues were found by West and Griffin109 even though another
experimental method was used !i.e., timing based on knee
angles", the walking track was a large square path, and the
analytical approach used was different. Others have also con-
firmed the existence of long-range scaling in gait using dif-
ferent analytical techniques.86,110,111 Appropriate filtering and
preprocessing need to be applied. For a further discussion of

the effects of turns on gait, for example, see the article by
Jindrich and Qiao112 in this volume and related studies by
Huxham et al.113,114 and Strike and Taylor.115

IV. RESULTS

A. Changes in fractal properties of gait in PD

What happens to the long-range correlations of gait in
patients with PD? Perhaps not too surprisingly, among pa-
tients with PD, the memory in gait “breaks down” and the
stride-to-stride fluctuations in gait now become very similar
to white noise or random fluctuations. Figure 4 shows an
example of the times series of the stride time of a patient
with PD, before and after the time series is randomly
shuffled, artificially removing any memory and correlations.
Visually, there is no difference between the original time
series and the randomly shuffled time series. The DFA scal-
ing exponent becomes close to 0.5 !the value for white noise;
an absence of long-range correlations". Similar results were
observed for a group of patients with PD62 demonstrating
that the long-range scaling and fractal-like behavior are re-
duced and the stride-to-stride fluctuations become more ran-
dom.

This breakdown of the long-range correlations could be
interpreted in several different ways. One simple explanation
for this finding is that among patients with PD, gait looses its
automaticity and fluidity. To some degree, each stride starts a
new process, unlinked and unrelated to the previous stride.
Hence, the memory of the locomotor control system is not
long term and fractal-like, but instead it becomes close to
zero. In support of this idea, statistical models of the long-
range correlations of gait and their breakdown have shown
that many of the observed changes can be explained by the
strength of the coupling among neighboring neural networks
and a loss of neurons.69,86,116

To better understand the relationship between average
stride length, gait variability, and the fractal-like property of
gait in PD, here we briefly examine the effects of different
conditions and interventions on these gait features to see how
each reacts to the different states. Table II summarizes these

FIG. 4. Gait rhythm dynamics in a patient with PD. On the left, time series are shown before !original" and after random reordering of the data. Note that the
temporal structure of the time series looks similar before and after reordering. This impression is confirmed using DFA !right". The slopes for the original data
and the reordered data set are both close to white noise !0.5".
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FoG – triggered by gait de-synchronization? 

- study phase synchronization between both legs (ideal phase difference = 180º) 
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- calculate phase via Wavelet-transform (PhD Dissertation A. Guillet (F. Argoul))
- “transform” Hilbert phase to genuine phase (Kralemann et al. PRE 77 (2008))
- consider marker events (heel strikes), calculate phase via linear interpolation:
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procedure involves the comparison with the corresponding analysis of shuffled data. Hence, we also consider

FmodðsÞ ¼
F ðsÞs1=2

hF 2
shuff ðsÞi

1=2
, (5)

where hF2
shuff ðsÞi

1=2 denotes the DFA (or CMA) fluctuation function (Eq. (3)) averaged over several
configurations of shuffled data, taken from the original series ðxkÞ.

2.5. Synchronization analysis

The methods described above can be used to study the properties of signals derived from each leg
separately. In order to focus on the interrelation between both legs, we calculated the degree of phase
synchronization between them. Note that we did not filter our data, since bandpass filtering could lead to an
overestimation of phase synchronization [24].

First we determined the phase difference between right and left leg via marker events (e.g., heel-strikes [hs]
and toe-offs [to]):

Dfm
k ¼ 2p

tm;ri
k $ ths;lek

ths;lekþ1 $ ths;lek

, (6)

where tm;ri
k refers either to the heel-strike (mode m ¼ hs) or the toe-off point (m ¼ to) of the right leg. This

approach is equivalent to the technique of Poincare section, which is a widely used method to analyze chaotic

systems [22]. The resulting phase differences typically form a time series c ¼ Dfhs
1 ;Df

to
1 ; . . . ;Df

hs
k ;Df

to
k ; . . .

with means Df̄hsaDf̄to
. For the sake of a uniform analysis of Dfhs and Dfto, we calculated the time series of

the normalized phase differences ~c ¼ D ~f
hs

1 ;D ~f
to

1 ; . . . ;D ~f
hs

k ;D ~f
to

k ; . . .with D ~f
hs

k ¼ Dfhs
k $

1
2ðDf̄

hs $ Df̄toÞ and

D ~f
to

k ¼ Dfto
k þ

1
2ðDf̄

hs $ Df̄toÞ. Plotting the histogram of the normalized phase differences would lead to a

single peak in case of high synchronization between both legs. Contrary, an absence of synchronization will
show a uniform distribution. To reliably quantify the distribution of phase differences, one can calculate the

Shannon entropy S ¼ $
PN

j¼1pj ln pj of the corresponding histogram (pj is the relative frequency of finding ~c
within the jth bin of the histogram and N is the number of bins). An index which measures the degree of phase
synchronization is defined by

r :¼
Smax $ S

Smax
, (7)

where Smax ¼ ln N is the maximal entropy, meaning a uniform distribution of the phase differences ~c [22].
According to this definition, no synchronization corresponds to r ¼ 0 (uniform distribution of ~c), whereas
r ¼ 1 means the distribution is localized in one point (d-function). The value of r strongly depends on the
number of bins of the histogram. It is suggested to estimate the optimal number of bins as N ¼
exp½0:626þ 0:4 lnðM $ 1Þ' where M is the number of samples [22,23]. However, to be able to compare our
results among all subjects (with different number of samples) we chose a sufficient number of bins and set
N ¼ 100 for all analyses.

3. Results

3.1. Fluctuation analysis of stride-to-stride time series

We analyzed time series of stride-to-stride intervals using DFA1, CMA and the corrected DFA1. For this
purpose, we manually removed all data related to the walking turns and calculated the fluctuation function of
both legs by F ðsÞhs ¼ ð½F 2ðsÞhs;ri þ F2ðsÞhs;le'=2Þ1=2 (cf. Eq. (3)). Fig. 3 depicts results for a typical control
subject (circles), an EPD patient (triangles) and a PD patient (crosses). Whereas the scaling exponent of the
healthy elderly subject is close to a ¼ 1:0, suggesting strong long-range correlations, the EPD and the PD
patients show more random behavior.
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FoG – triggered by gait de-synchronization? 

Fig. 5.

The normalized phase differences ψ
∼

 between both legs are plotted against time for (a) one
control subject and (c) one PD patient. Note that data become irregular during turns for both

subjects. However, clear increased variation of ψ
∼

 can be detected in the interturn periods of
the PD patient as compared to the control subject. Panels on the right-hand side show the
corresponding normalized histograms and ρ-values, (b) for the control subject, and (d) for the
PD patient. Turn times of control subject: 14.7, 29.6, 45.0, 59.4, 75.3, 90.1, 105.9 s; turn times
of PD patient: 29.8, 62.5, 95.7 s.
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Healthy
à small 

fluctuations 
in phase diff 

PD patient
à large 

fluctuations in 
phase diff 

Healthy (n=24; mean age: 64yrs) PD patients (n=29; mean age: 67yrs)
! = 0.62 ± 0.01 ! = 0.53 ± 0.02

R. Bartsch et al., Physica A 383(2), 455 (2007)



FoG – de-synchronization between legs?

instead of gait, study limb dynamics using a strange stationary bicycle

strange? - because pedals were not locked at 180 deg
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Abstract

To classify lower limb dynamics in patients with Parkinson’s disease (PD), we conducted a clinical study by using pedaling exercise.
Twenty-seven patients with idiopathic PD were included in this study. We measured rotational velocities of pedals during pedaling move-

ments with a newly developed ergometer.
The velocity waveforms exhibited different characteristics among patients, which could be categorized into four different clusters. In cluster

1, the amplitude on each side was constant and the relative phase was locked at 180◦. The pattern was the same as seen in normal subjects.
In cluster 2, the amplitude on each side was constant, but the relative phase was locked at 90◦. In cluster 3, the amplitude on each side was
modulated, and the relative phase drifted monotonously from 0 to 360◦ during pedaling cycles. In cluster 4, the amplitude on each side was
synchronously and irregularly modulated, and the relative phase fluctuated with intermittent spike-like decrement. In order to evaluate, the
correlation between pattern and severity of PD, we divided 13 patients, who underwent measurement of pedaling patterns more than three
times, into three groups, and found that the abnormal coordination pattern correlated with the presence of freezing phenomenon in patients
with PD. Our clinical analysis may contribute in analyzing and classifying the dynamics of PD.
© 2003 Elsevier Science Inc. All rights reserved.

Keywords: Parkinson’s disease; Central pattern generator (CPG); Interlimb coordination; Strength ergometer; Cluster analysis; Freezing phenomenon

1. Introduction

Parkinson’s disease (PD) is characterized by its clinical
features of rigidity, bradykinesia, and tremor [5,7,19,20].
In addition, interlimb incoordination is another clinical
feature observed in patients with PD and is an inhibitory
factor in daily livings [21,22]. Interlimb incoordination ob-
served in upper limbs has been investigated in some studies
[1–4,6,29–31]. However, interlimb incoordination in lower
limbs has not received enough attention [31]. A major rea-
son for a lack of attention, we suppose, is the absence of
adequate protocols or devices to evaluate incoordination in
lower limbs. For investigation of incoordination in upper
limbs, the majority of investigators have used mirror move-

∗ Corresponding author. Tel.: +81-6-6879-3571; fax: +81-6-6879-3579.
E-mail address: abe@neurol.med.osaka-u.ac.jp (K. Abe).

ments of upper limbs. As a similar task for lower limbs,
we thought pedaling movements might be a possible coun-
terpart. With a usual bicycle device, however, right and left
lower limbs are forced to move synchronously with half a
period phase shifted and it is difficult to observe interlimb
incoordination. Recently, one of us developed a special er-
gometer that allowed independent rotation of its right and
left pedals and was equipped with an electric motor to main-
tain the rotational velocity of each pedal as desired [28].
In the present study, we conducted a clinical experiment

with patients with PD by using this ergometer and mea-
sured the rotational velocity and relative phase in pedaling
movements. Based on this clinical experiment, we divided
dynamics of 27 patients into four patterns using cluster
analysis. For evaluation of the correlation between pattern
and severity of PD, we divided 13 patients who underwent
measurement of pedaling patterns more than three times into
three groups and discussed clinical features of these groups.

0361-9230/03/$ – see front matter © 2003 Elsevier Science Inc. All rights reserved.
doi:10.1016/S0361-9230(03)00119-9
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Fig. 2. Data from a normal subject during the exercise is shown to illustrate several ways of data-display that were used to characterize interlimb
coordination during the pedaling exercise. (a) Time courses of rotational velocities of the left and right pedals. Abscissa is the time in seconds (s).
Ordinate is the rotational velocity in rpm. (b) The velocity time series of the right pedal was plotted against that of the left pedal, which was referred
to as LR-plot. (c) The relative phase between the left and right was plotted as the function of the cycle number. (d) LR-plots for three different short
intervals (3 s) extracted from the data for single 6-min exercise. Each LR-plot was fitted by a regression line (dashed line) whose slope reflects the shape
of the LR-plot. The time-dependent changes in the slope were used to characterize the interlimb coordination. (e) LR-plot, which is the same as the
panel (b), and regression lines (dashed lines) for short data segments obtained by dividing the data for single 6-min exercise into every 3-s interval. The
data used for the panels (b), (c), (d), and (e) were the same as (a).

Fig. 4(a3, b3, and c3). In cluster 4, the amplitude on each
side was synchronously and irregularly modulated, and
the relative phase fluctuated with intermittent spike-like
decrement as shown in Fig. 4(a4, b4, and c4).
Since the severity of disease may change even in a given

day in PD, we could not find a significant correlation be-
tween the pattern and the severity of disease. Thus, we
paid attention to pattern changes during evaluations. In 13
patients, we could measure pedaling patterns more than
three times. The above patterns were unchanged in seven
patients, while changed in six patients. Clusters 1 and 2
showed continuous changes of the amplitude and the rel-
ative phase, while clusters 3 and 4 showed discontinuous
changes. According to the pattern changes, we divided pa-
tients into three groups. Group 1 consisted of seven patients
who remained in cluster 1 or 2 during evaluations. Group
2 consisted of one patient who remained in cluster 3 or 4
during evaluations. Group 3 consisted of five patients who
changed patterns from cluster 1 or 2 to cluster 3 or 4, and
versa during evaluations. The severity of disease evaluated
by Hoehn and Yahr scale and the UPDRS motor score was
not significantly different among three groups. However,
only patients in Groups 2 and 3 had freezing phenomenon
(also referred to as “motor blocks”; the initiation or contin-
uation of a motor act such as walking is arrested for a few
seconds), while patients in Group 1 did not.
This ergometer can support their pedaling movements

even if patients could hardly move pedals. Thus, our mea-
surements could not depend whether they were in “ON” or

“OFF” state and we believe that the grouping did not depend
on patients state. To ascertain this, we additionally measured
these 13 patients in their ON and OFF state, and could not
find needs to change grouping in both states.

4. Discussion

The major findings of this study were: (1) interlimb
incoordination in pedaling movement could be categorized
into four different patterns by using cluster analysis; (2)
based on the above pattern, patients could be divided into
three groups; and (3) each group had distinctive clinical
features mainly characterized by the presence of freezing
phenomenon.
Bimanual coordination requires specific, sequential tim-

ing of muscle activation to maintain the required difference
between two hands, and mirror-asymmetrical movement
[16]. Attention to maintain intermanual timing is the most
crucial aspect of the movement. This also is the case in
interlimb incoordination in the lower extremities. Thus,
laterality between two lower limbs may be the factor deter-
mining coordination.
Another factor is the freezing phenomenon that is a

common and very disturbing parkisonian symptom [27].
Freezing episodes tend to be transient and brief, and normal
gait is resumed. Visual or auditory cues are often employed.
With the advance of disease, the freezing phenomenon can
appear more frequently and be more prolonged, which in-

control subject
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Fig. 4. Representative data for each of the four clusters, which was the closest data point of the centroid of the cluster in the five-dimensional index space.
Representative data of the clusters 1, 2, 3, and 4 are shown on the first, second, third, and fourth rows, respectively. (a) Velocity profiles for the left and
right pedals. In this plot, the solid curve represents the less-affected side and the dashed curve the affected side. (b) LR-plots. (c) Relative phase time series.

c3 and a4, b4, c4)) had freezing phenomenon. Six patients in
Groups 1 and 3, who showed discontinuous changes of the
amplitude and the relative phase at least once, had freezing
phenomenon. We could not define precise pathophysiology
of freezing phenomenon, but found that sudden cessation
with subsequent re-initiation of pedaling might be a key
point to observe and to evaluate freezing phenomenon.
To elucidate the mechanism of developing freezing phe-

nomenon, further investigation using neuroimaging tech-
niques and during rhythmic behaviors in PD patients may
be needed. However, our clinical analysis may contribute in
analyzing and classifying the dynamics of PD.
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Appendix A

A.1. Variance of amplitude modulation (vam)

The index vam was defined as the variance of amplitude
time series. More explicitly, the variance of the amplitude
time series for each of the left and right pedals was calcu-
lated. The obtained two variances were compared to take a
larger one as vam. vam represents the intensity of amplitude
modulation. For example, when the amplitude modulations
of both sides were small as shown in Fig. 2(a), the vam took
small value.

A.2. Mean relative phase (mrp) and variance of relative
phase (vrp)

The indices mrp and vrp were defined as the mean and
variance of the relative phase time series. More precisely,
mrp and vrp were defined by the mean and variance of
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FoG+

FoG-



Summary: previous work on PD-related movement 
disorders and FoG

- focused on the analysis of gait and limb dynamics as measured by

i) force sensitive insoles

ii) a “strange” stationary bicycle

iii) accelerometers (M. Baechlin et al., IEEE 14, 14(2) (2010)) 

iv) EMG (A. Nieuwboer et al. Brain 127, 1650 (2004))

- other physiological signals

i) ECG – increase in heart rate during FoG (Maidan et al., Mov. Disord. 25, 2346, 2010)

ii) Skin conductance – significant changes prior to FoG (Mazilu et al., IEEE 19, 2015)

iii) EEG – increase in theta and beta frequency power during FoG
(e.g., Shine et al., Clin. Neurophysiol. 125, 569, 2014 and Handojoseno et al., IEEE 23, 887, 2015)

iv) EEG – increase in interhemispheric phase synchronization in PD
(Y. Miron-Shahar et al., Parkinsonism & related disorders 65, 210, 2019.)

àno systematic study yet on EEG brain networks in PD during 
walking



EEG brain networks in PD and FoG

2.4. Brain lobe interaction matrices and networks

We calculate two kinds of interaction matrices based on (i) the synchronization index R between
all combinations of instantaneous amplitude signals j1 and j2 (see Figs. 2 and 3(a) for ↵ � ↵
interaction), and (ii) the fraction of significant vs. non-significant interactions (“links”) based on
the detected ⌧⇤ and W values (Fig. 3(b)). More specifically, for the “fraction” matrix � we set the
matrix element � j1, j2 = 1, if the corresponding j1 – j2 interaction in a given segment of length L
is significant (i.e., ⌧⇤ 2 [�0.05, 0.05] seconds and W > 2.5), otherwise � j1, j2 = 0. The averaging
across all normal walking segments ⌫ and across the brain lobes is performed in the same way as
for the synchronization matrix R (cp. Fig. 2). The resulting R and � matrices for each subject are
then multiplied element-wise to obtain the total brain lobe interaction matrix R ⇥ � (Fig. 3(c)).

The brain lobe interaction matrix represents an adjacency matrix of the underlying
physiological network with brain lobes as network nodes and the matrix elements as weighted

Figure 2: Construction of brain wave synchronization matrices based on EEG electrode position.
(a) Data were recorded by a 32-channel EEG montage according to the international 10-20 standard system
(the four central electrodes Fz, Cz, Pz, Oz, and the two reference electrodes M1 and M2 are not shown and
were excluded from the analysis). Electrodes were grouped according to di↵erent brain lobes (as indicated
by the dashed lines): Frontal motor left - FML (including electrodes FP1, F7, F3, FC5, C3); frontal motor
right - FMR (FP2, F8, F4, FC6, C4); temporal left - TL (FT9, T3, TP9, T5); temporal right -TR (FT10,
T4, TP10, T6); parietal occipital left - POL (CP5, P3, O1, PO9); and parietal occipital right - POR (CP6,
P4, O2, PO10). (b) Matrix of the averaged synchronization indexes hR j1, j2i⌫ for all combinations of ↵-
amplitude signals j1 and j2 from all 26 electrodes of a single PD+FoG+ subject. Averaging was done over
all normal walking segments ⌫. Note that we exclude electrodes with high impedance or high standard
deviations from our analysis (e.g., the two dark blue lines in panel (b) corresponding to electrode CP6). (c)
The matrix elements of panel (b) are averaged according to the definition of brain lobes shown in (a) to
obtain a brain wave synchronization matrix. Matrix elements that correspond to same electrode interaction
(i.e., the diagonal elements in (b)) have been excluded from the average.
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EEG networks:

• nodes = EEG channels or brain lobes

• links = interaction/coupling between EEG channels/brain lobes

How to quantify such coupling?

à One possibility: Synchronization!



Phase Synchronization of coupled oscillators

 

(a) 

 

(b) 

Figure 2 A sample of (a) normal and (b) PD EEG signal. 

 

well-defined frequency

mixture of frequencies

à need to apply a bandpass

filter to extract brain wave signals

M. Rosenblum et al., in Handbook of Biol 
Physics, Chapter 9, pp. 279-321 (2001)

Caution! L. Xu and P. Ch. Ivanov, PRE 73, 065201 (2006)

a) b)

?



Phase Synchronization of coupled oscillators

Figure 1: Phase synchronization of amplitude-amplitude modulations and surrogate analysis to
identify significant interactions. Two pairs of ↵ frequency-band signals (blue curves in (a)-(c) and (b)-(d))
from di↵erent EEG electrodes were obtained by applying a [7.8-15.59Hz] bandpass-filter to the preprocessed
EEG data. The black curves in each of these panels are the corresponding instantaneous amplitudes
calculated by the analytic signal approach, Eq.(1). Red dashed lines are the corresponding averages hA j(t)iL
subtracted when applying the analytic signal approach to derive phases of these instantaneous amplitudes.
(e) Phase di↵erences of the instantaneous amplitudes of (a)-(c) are clustered on the unit circle leading to a
high synchronization index of R = 0.85 (Eq. (2)). In contrast, the signals in (b)-(d) are less synchronized
as can be seen in (f), where the corresponding phase di↵erences are distributed on the unit circle yielding a
low index of R = 0.38. (g) and (h) Phase synchronization index R as a function of the shift ⌧ between the
instantaneous amplitude signals (a) vs. (c) and (b) vs. (d), respectively. The phase synchronized amplitude
signals from (a) and (c) yield a maximum R at shift ⌧⇤ = ⌧|R(⌧)⌘Rmax

= 0, and R(⌧) decays rapidly for |⌧| > 0.
For the much lower synchronized signals from (b) and (d), however, R(⌧) shows fluctuating behavior without
clear decay. A significance value W characterizes R(⌧) by normalizing Rmax by the mean and standard
deviation of R(⌧) (Eq. 3). Correspondingly, we obtain a higher W value for panel (g) (W = 5.2) than for
panel (h) (W = 1.6). We utilize W to characterize the significance of interaction between two signals.
Panel (i) indicates that highest W values are observed for ⌧⇤ ⇡ 0. In this scatter plot we show 1000 ↵ � ↵
samples of W vs. ⌧⇤ for real data (blue circles) and surrogate data (red dots). Real signals are taken from the
same patient (using di↵erent EEG electrodes), whereas surrogate pairs were chosen randomly from di↵erent
patients. Clearly, higher W values are obtained for real signals for ⌧⇤ ⇡ 0. Surrogate analysis does not lead
to high W values around ⌧⇤ ⇡ 0 and shows a uniform W vs. ⌧⇤ distribution.
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Example: two channels

blue = alpha oscillations

black = amplitude of the alpha signals



Extract amplitude and phase from signal

Step 1: Hilbert transform of s(t):

Step 2: Construct complex analytic signal (matlab: hilbert(s)):

Properties of Hilbert transform: Preserves the amplitude of the signal 
Advantage: can be applied to any signal; needs to be narrow banded

Amplitude Phase

Step 3: Calculate instantaneous amplitude and phase 



Characterization of Phase Synchronization

Large R index:  strong phase synchronizationà strong coupling
Small R index:  weak phase synchronization à weak  coupling

Strong synchronization Weak synchronization

Figure 1: Phase synchronization of amplitude-amplitude modulations and surrogate analysis to
identify significant interactions. Two pairs of ↵ frequency-band signals (blue curves in (a)-(c) and (b)-(d))
from di↵erent EEG electrodes were obtained by applying a [7.8-15.59Hz] bandpass-filter to the preprocessed
EEG data. The black curves in each of these panels are the corresponding instantaneous amplitudes
calculated by the analytic signal approach, Eq.(1). Red dashed lines are the corresponding averages hA j(t)iL
subtracted when applying the analytic signal approach to derive phases of these instantaneous amplitudes.
(e) Phase di↵erences of the instantaneous amplitudes of (a)-(c) are clustered on the unit circle leading to a
high synchronization index of R = 0.85 (Eq. (2)). In contrast, the signals in (b)-(d) are less synchronized
as can be seen in (f), where the corresponding phase di↵erences are distributed on the unit circle yielding a
low index of R = 0.38. (g) and (h) Phase synchronization index R as a function of the shift ⌧ between the
instantaneous amplitude signals (a) vs. (c) and (b) vs. (d), respectively. The phase synchronized amplitude
signals from (a) and (c) yield a maximum R at shift ⌧⇤ = ⌧|R(⌧)⌘Rmax

= 0, and R(⌧) decays rapidly for |⌧| > 0.
For the much lower synchronized signals from (b) and (d), however, R(⌧) shows fluctuating behavior without
clear decay. A significance value W characterizes R(⌧) by normalizing Rmax by the mean and standard
deviation of R(⌧) (Eq. 3). Correspondingly, we obtain a higher W value for panel (g) (W = 5.2) than for
panel (h) (W = 1.6). We utilize W to characterize the significance of interaction between two signals.
Panel (i) indicates that highest W values are observed for ⌧⇤ ⇡ 0. In this scatter plot we show 1000 ↵ � ↵
samples of W vs. ⌧⇤ for real data (blue circles) and surrogate data (red dots). Real signals are taken from the
same patient (using di↵erent EEG electrodes), whereas surrogate pairs were chosen randomly from di↵erent
patients. Clearly, higher W values are obtained for real signals for ⌧⇤ ⇡ 0. Surrogate analysis does not lead
to high W values around ⌧⇤ ⇡ 0 and shows a uniform W vs. ⌧⇤ distribution.
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phase of Amplitude signal 2: f2

synch. index R in window n



Probing significant interactions in amplitude 
synchronization

Figure 1: Phase synchronization of amplitude-amplitude modulations and surrogate analysis to
identify significant interactions. Two pairs of ↵ frequency-band signals (blue curves in (a)-(c) and (b)-(d))
from di↵erent EEG electrodes were obtained by applying a [7.8-15.59Hz] bandpass-filter to the preprocessed
EEG data. The black curves in each of these panels are the corresponding instantaneous amplitudes
calculated by the analytic signal approach, Eq.(1). Red dashed lines are the corresponding averages hA j(t)iL
subtracted when applying the analytic signal approach to derive phases of these instantaneous amplitudes.
(e) Phase di↵erences of the instantaneous amplitudes of (a)-(c) are clustered on the unit circle leading to a
high synchronization index of R = 0.85 (Eq. (2)). In contrast, the signals in (b)-(d) are less synchronized
as can be seen in (f), where the corresponding phase di↵erences are distributed on the unit circle yielding a
low index of R = 0.38. (g) and (h) Phase synchronization index R as a function of the shift ⌧ between the
instantaneous amplitude signals (a) vs. (c) and (b) vs. (d), respectively. The phase synchronized amplitude
signals from (a) and (c) yield a maximum R at shift ⌧⇤ = ⌧|R(⌧)⌘Rmax

= 0, and R(⌧) decays rapidly for |⌧| > 0.
For the much lower synchronized signals from (b) and (d), however, R(⌧) shows fluctuating behavior without
clear decay. A significance value W characterizes R(⌧) by normalizing Rmax by the mean and standard
deviation of R(⌧) (Eq. 3). Correspondingly, we obtain a higher W value for panel (g) (W = 5.2) than for
panel (h) (W = 1.6). We utilize W to characterize the significance of interaction between two signals.
Panel (i) indicates that highest W values are observed for ⌧⇤ ⇡ 0. In this scatter plot we show 1000 ↵ � ↵
samples of W vs. ⌧⇤ for real data (blue circles) and surrogate data (red dots). Real signals are taken from the
same patient (using di↵erent EEG electrodes), whereas surrogate pairs were chosen randomly from di↵erent
patients. Clearly, higher W values are obtained for real signals for ⌧⇤ ⇡ 0. Surrogate analysis does not lead
to high W values around ⌧⇤ ⇡ 0 and shows a uniform W vs. ⌧⇤ distribution.
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Interaction matrices for synchronization and significance2.4. Brain lobe interaction matrices and networks

We calculate two kinds of interaction matrices based on (i) the synchronization index R between
all combinations of instantaneous amplitude signals j1 and j2 (see Figs. 2 and 3(a) for ↵ � ↵
interaction), and (ii) the fraction of significant vs. non-significant interactions (“links”) based on
the detected ⌧⇤ and W values (Fig. 3(b)). More specifically, for the “fraction” matrix � we set the
matrix element � j1, j2 = 1, if the corresponding j1 – j2 interaction in a given segment of length L
is significant (i.e., ⌧⇤ 2 [�0.05, 0.05] seconds and W > 2.5), otherwise � j1, j2 = 0. The averaging
across all normal walking segments ⌫ and across the brain lobes is performed in the same way as
for the synchronization matrix R (cp. Fig. 2). The resulting R and � matrices for each subject are
then multiplied element-wise to obtain the total brain lobe interaction matrix R ⇥ � (Fig. 3(c)).

The brain lobe interaction matrix represents an adjacency matrix of the underlying
physiological network with brain lobes as network nodes and the matrix elements as weighted

Figure 2: Construction of brain wave synchronization matrices based on EEG electrode position.
(a) Data were recorded by a 32-channel EEG montage according to the international 10-20 standard system
(the four central electrodes Fz, Cz, Pz, Oz, and the two reference electrodes M1 and M2 are not shown and
were excluded from the analysis). Electrodes were grouped according to di↵erent brain lobes (as indicated
by the dashed lines): Frontal motor left - FML (including electrodes FP1, F7, F3, FC5, C3); frontal motor
right - FMR (FP2, F8, F4, FC6, C4); temporal left - TL (FT9, T3, TP9, T5); temporal right -TR (FT10,
T4, TP10, T6); parietal occipital left - POL (CP5, P3, O1, PO9); and parietal occipital right - POR (CP6,
P4, O2, PO10). (b) Matrix of the averaged synchronization indexes hR j1, j2i⌫ for all combinations of ↵-
amplitude signals j1 and j2 from all 26 electrodes of a single PD+FoG+ subject. Averaging was done over
all normal walking segments ⌫. Note that we exclude electrodes with high impedance or high standard
deviations from our analysis (e.g., the two dark blue lines in panel (b) corresponding to electrode CP6). (c)
The matrix elements of panel (b) are averaged according to the definition of brain lobes shown in (a) to
obtain a brain wave synchronization matrix. Matrix elements that correspond to same electrode interaction
(i.e., the diagonal elements in (b)) have been excluded from the average.
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Example: Synchronization matrix for PD+FoG+ during normal walking, 
alpha band

• analyze interactions between all EEG channels in the 
same frequency band to obtain interaction matrices



Interaction matrices for synchronization and significance

Figure 3: Brain lobe interaction matrix calculated from synchronization and fraction matrix. Element-
wise multiplication of (a) synchronization matrix R and (b) fraction matrix � yields (c) the total brain lobe
interaction matrix R ⇥ � that is used as the adjacency matrix of the underlying physiological network of
brain lobe interactions (Fig. 5). In this figure, all matrices are derived for ↵ – ↵ interactions during normal
walking epochs. Group average matrices for EC, PD-FoG, PD+FoG- and PD+FoG+ (from top to bottom)
are shown. Note, there is a dramatic increase in brain lobe interaction with severity of Parkinson’s disease
which is represented by (i) higher levels of ↵ – ↵ synchronization as well as (ii) higher fractions of significant
interactions.

network links. We obtain these interaction matrices and networks separately for each of the five
defined frequency bands (excluding the � band), adjusting the segment length L accordingly (see
Table 2). The resulting brain lobe interaction matrices are averaged over all the participants in each
of the four study groups EC, PD-FoG, PD+FoG-, PD+FoG+ to construct their group-averaged
networks for all frequency bands (Fig. 5).

3. Results

Our results for the ↵ band shown in Fig. 3 demonstrate that PD patients show stronger brain lobe
interactions than elderly controls (EC). In addition, the interactions increase with disease severity
from PD-FoG to PD+FoG- and to PD+FoG+ for all intra-lobe and inter-lobe links (Fig. 3(c)). This
overall increase is because of two factors: (i) higher levels of phase synchronization (PS) of EEG

9

Example: Interaction matrices for alpha band

à increase in EEG interactions with disease severity

àmost pronounced within the same lobe and same hemisphere



Brain networks across different frequency bands

Figure 5: Physiological networks of brain lobe interactions for di↵erent EEG frequency bands. The
brain lobe interaction matrices R ⇥ � are used to construct physiological networks for each frequency
band and for each group during normal walking (cp. Fig. 3(c) for ↵–↵ interactions for all four groups).
Network nodes correspond to the six brain lobes and the color coding of the nodes is according to the intra-
lobe interaction values obtained from the diagonal matrix elements of the lobe-averaged R ⇥ � matrices.
Weighted network links reflect inter-lobe interaction as given by the value of the non-diagonal matrix
elements, and darker gray color and thicker lines represent stronger interactions. Subjects with Parkinson’s
disease (PD) generally exhibit higher levels of brain lope interactions, and highest values are observed for
PD+FoG+ consistently across all EEG frequency bands.
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àconsistent pattern 
across different 
frequencies

àdifference is more 
pronounced for 
higher frequencies



Interaction strength across lobes and hemispheres

Example: ranking plot of matrix elements for alpha band

Figure 4: Rank distributions for the strength of brain lobe interactions. Group-averaged values of
individual brain lobe ↵–↵ interactions (i.e., 21 matrix elements of the upper triangular part of the matrices
in Fig. 3(c)) for the di↵erent groups of subjects. Ranking follows the values of the PD+FoG+ group.
Ranks 1 and 2 correspond to interactions within the frontal motor areas (FMR-FMR and FML-FML) that
are strongest for all groups. Note that values of each R ⇥ � matrix element are consistently highest for
PD+FoG+ and lowest for EC, with PD-FoG and PD+FoG- falling in-between. Symbols and error bars
represent the group means and standard error, respectively. Error bars have been calculated using a bootstrap
method: out of all values of a particular matrix element, a new set of values is randomly drawn and for each
sample the unweighted mean is calculated. This process is repeated 100 times and the standard deviation of
these means is an estimate for the standard error [54].

amplitude-amplitude modulations for PD patients (Fig. 3(a)), and (ii) brain lobe interactions are
more significant in PD patients than in EC (Fig. 3(b)). The increase is consistent across all intra-
lobe and inter-lobe interactions, since the PD+FoG+ group always yields the largest R ⇥ � in the
rank distribution in Fig. 4, while the EC group always yields the smallest R ⇥ �. Note that for the
PD+FoG+ and the EC group, the error bars calculated by a bootstrap approach never overlap. The
values for the PD-FoG and PD+FoG- groups always fall in between the PD+FoG+ and the EC
group, with the PD+FoG- group generally scoring above the PD-FoG group.

Furthermore, for all groups of subjects the interactions within the same lobe are strongest and
more significant, as can be seen in Fig. 3, where the diagonal elements of all matrices show highest
values. Correspondingly, in the rank distributions in Fig. 4, the first six ranks belong to intra-
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Intra-lobe interaction in frontal lobe for different motor 
tasks

Figure 6: Intra-lobe brain interactions in the frontal motor lobe for the individual subjects performing
di↵erent motor tasks. (a) Symbols represent the average values of FMR-FMR and FML-FML ↵�band
interactions as derived from the R ⇥ � matrix during normal walking (blue squares), standing still (green
diamonds) and hand tapping (red circles). Values for each task are arranged in columns and each symbol
represents an individual subject. The di↵erent groups are marked by di↵erent background shadings. Fitting
lines highlight the trend towards higher brain lobe interactions for subjects with PD and FoG, which is
seen across all three motor tasks. (b) Scatter plots show strong cross-correlations between the di↵erent
motor tasks and confirm the observation of an increase of brain interactions with PD severity. Colors of the
symbols correspond to the background shadings in (a) for patients belonging to di↵erent groups. Pearson’s
correlation coe�cients ⇢ are highly significant (p < 10�3) and are shown in the upper left corner of each
subplot. The insets confirm significance of the results by surrogate analysis (i.e., shu✏ing the number tuples
of the subjects by n iterations, with n = 0 being the original un-shu✏ed tuple series).
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Summary

ü Significance measure to distinguish between physiological and spurious 
synchronization

ü Strength of network links/interactions in EEG amplitudes shows dramatic increase 
for PD patients in more advanced stages of the disease

ü overall increase in EEG synchronization for advanced PD is analogous 
Alzheimer’s disease; increased brain activity in AD could be related to a 
compensation mechanism due to the process of neurodegeneration 

ü EEG amplitude synchronization is similar in PD-FoG and PD+FoG- although both 
groups are generally quite different in clinical terms

ü Perhaps: FoG risk changes on daily basis where cortical areas switch between 
’prone-to-FoG’ vs. non-FoG states (this could be monitored by EEG 
synchronization networks and treated by DBS) 


