EEG Synchronization networks of Parkinson's disease patients with Freezing of Gait

 d_{u} to obtain a brain a brain d_{u} to the same electrode interaction matrix electronical matrix electronical to the same electronical matrix electronical matrix electronical matrix electronical matrix electroni \mathcal{U} and diagonal elements in \mathcal{U} have been excluded from the average. d_{d} to obtain a brain a brain a brain d_{d} to d_{d} that correspond to the same electrode interaction to the same electrode interaction of the same electrode interaction of the same electrode interaction of Yuki et al., Front. Human Neurosci. 16 (2022) *Asher et al., Nat. Comm. Biol. 4:1017 (2021)*

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02544-w ARTICLE

Ronny Bartsch severity from PD-FoG+ and to PD-FoG+ for all to PD+FoG+ for all to PD Donny Doutsch because of two factors: (i) higher levels of phase synchronization \overline{Q} of EEG amplitude modulations for P

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02544-w ARTICLE

 P or Z on \sim 20.1.22 PD is not only present during locomotion but also shows for other motor tasks. Figure 5 depicts results of intra-lobe interac-*ISINP 26.7.22*

Acknowledgements

Collaborators:

Eitan Asher, Shlomo Havlin – Physics, Bar-Ilan University

Jan Kantelhardt – Physics, Halle University, Germany

Meir Plotnik – Sheba Medical Center, Israel

Grants:

Israel Science Foundation (ISF) German-Israeli Foundation (GIF)

FoG – Overview

Freezing of Gait = FoG, Parkinson's disease = PD

FoG is a:

- significant risk factor for falls and injuries
- one of the most disabling symptoms of PD
- not universal (only about 50% of PD)
- less frequent in women
- less frequent in PD with pronounced tremor

FoG trigger (most common):

- turns
- narrow passage
- gait initiation
- uneven floor (carpet, rug)
- not clear why some PD patients show FoG while others do not

Measuring locomotion and gait

pedar-x

Measuring gait with force sensitive insoles

Random stride-to-stride fluctuations in PD

FoG – triggered by gait de-synchronization? synchlol
C 1ization? NMMMM

- study phase synchronization between both legs (ideal phase difference = 180°) configurations of shuffled data, taken from the original series \mathcal{I}_max

- calculate phase via Wavelet-transform (PhD Dissertation A. Guillet (F. Argoul))
- "transform" Hilbert phase to genuine phase (Kralemann et al. PRE 77 (2008))
- consider marker events (heel strikes), calculate phase via linear interpolation:

$$
\Delta \phi_k^m = 2\pi \frac{t_k^{m,\text{ri}} - t_k^{\text{hs,le}}}{t_{k+1}^{\text{hs,le}} - t_k^{\text{hs,le}}}
$$

FoG – triggered by gait de-synchronization?

 s subjects. However, clear increased variation of R *R. Bartsch et al., Physica A 383(2), 455 (2007)* $t_n =$ and side t_n subsets as any the control side show the right-hand side show that t_n

FoG – de-synchronization between legs?

instead of gait, study limb dynamics using a strange stationary bicycle

strange? - because pedals were not locked at 180 deg

Brain Research Bulletin 61 (2003) 219–226

BRAIN RESEARCH BULLETIN

www.elsevier.com/locate/brainresbull

Classifying lower limb dynamics in Parkinson's disease

Kazuo Abe^{a,∗}, Yoshiyuki Asai^b, Yoshimi Matsuo^c, Taishin Nomura^b, Shunsuke Sato^b, Satoru Inoue^c, Isao Mizukura^d, Sabro Sakoda^a

Summary: previous work on PD-related movement disorders and FoG

- focused on the analysis of gait and limb dynamics as measured by
	- i) force sensitive insoles
	- ii) a "strange" stationary bicycle
	- iii) accelerometers (M. Baechlin et al., IEEE 14, 14(2) (2010))
	- i V) EMG (A. Nieuwboer et al. Brain 127, 1650 (2004))
- other physiological signals
- i) ECG increase in heart rate during FoG (Maidan et al., Mov. Disord. **25**, 2346, 2010)
- ii) Skin conductance significant changes prior to FoG (Mazilu et al., IEEE **19**, 2015)
- iii) EEG increase in theta and beta frequency power during FoG
	- (e.g., Shine et al., Clin. Neurophysiol. **125**, 569, 2014 and Handojoseno et al., IEEE **23**, 887, 2015)
- iv) EEG increase in interhemispheric phase synchronization in PD
	- (Y. Miron-Shahar et al., Parkinsonism & related disorders **65**, 210, 2019.)

\rightarrow no systematic study yet on EEG brain networks in PD during walking

EEG brain networks in PD and FoG

EEG networks:

• nodes = EEG channels or brain lobes

 FEG channels/hrain lohes • links = interaction/coupling between EEG channels/brain lobes $\sum_{n=1}^{\infty}$ were excluded from the analysis). Electrodes were grouped according to different brain lobes (as in by the dashed lines): Frontal motor left - FML (including electrodes FP1, F7, F3, FC5, C3); frontal motor \rightarrow One possibility: Synchronization! How to quantify such coupling?

Phase Synchronization of coupled oscillators

blue = alpha oscillations

black = amplitude of the alpha signals

Extract amplitude and phase from signal

Step 1: Hilbert transform of s(t):
$$
\bar{s}(t) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{s(\tau)}{t - \tau} d\tau
$$
,

Step 2: Construct complex analytic signal (matlab: hilbert(s)):

$$
S \equiv s(t) + i\tilde{s}(t) = A(t)e^{i\varphi(t)}
$$

Step 3: Calculate instantaneous amplitude and phase

$$
Amplitude \qquad \qquad \text{Phase} \qquad \qquad \text{Phase} \qquad \qquad \text{Area} \qquad \qquad \text{Area} \
$$

Properties of Hilbert transform: Preserves the amplitude of the signal Advantage: can be applied to any signal; needs to be narrow banded

Characterization of Phase Synchronization

phase of Amplitude signal 1: ϕ_1

phase of Amplitude signal 2: ϕ_2

synch. index R in window v $R(v) = |\langle exp[i(\phi_1(t) - \phi_2(t))] \rangle_v|$

Strong synchronization Weak synchronization

Large R index: strong phase synchronization \rightarrow strong coupling Small R index: weak phase synchronization \rightarrow weak coupling

Probing significant interactions in amplitude synchronization

- shift amplitude signals against each other, time shift τ
- calculate R as function of shift $\rightarrow R(\tau)$
- calculate significance value $W = \frac{R_{max} \langle R(\tau) \rangle}{\sigma(R(\tau))}$ $\sigma(R(\tau))$

Figure 1: Phase synchronization of a matrix \mathcal{L} and surrogate analysis to analyzis t *

Interaction matrices for synchronization and significance we calculate two kinds of interaction matrices based on \mathcal{R} between \mathcal{R} between \mathcal{R}

the detected ⌧⇤ and *W* values (Fig. 3(b)). More specifically, for the "fraction" matrix we set the • analyze interactions between all EEG channels in the \mathbf{F} same frequency band to obtain interaction matrices same frequency band to obtain interaction matrices

all combinations of instantaneous amplitude signals *j*¹ and *j*² (see Figs. 2 and 3(a) for ↵ ↵

 \cdot Synchronization matrix for PD+FoG⁺ during normal walking physiological network with brain lobes as network nodes and the matrix elements as weighted Example: Synchronization matrix for PD+FoG+ during normal walking, alpha band

Interaction matrices for synchronization and significance

Example: Interaction matrices for alpha band

 α FFG interactions with disease severity. \mathcal{L} multiplication of \mathcal{L} and \mathcal{L} and \mathcal{L} and \mathcal{L} total brain lobe (c) the total brain lobe (c) \rightarrow increase in EEG interactions with disease severity

ounced within the same lobe and same hemisphere \rightarrow most pronounced within the same lobe and same hemisphere

Brain networks across different frequency bands

- \rightarrow consistent pattern across different frequencies
- \rightarrow difference is more pronounced for higher frequencies

Interaction strength across lobes and hemispheres

Example: ranking plot of matrix elements for alpha band

Intra-lobe interaction in frontal lobe for different motor tasks

- \checkmark Significance measure to distinguish between physiological and spurious synchronization
- \checkmark Strength of network links/interactions in EEG amplitudes shows dramatic increase for PD patients in more advanced stages of the disease
- \checkmark overall increase in EEG synchronization for advanced PD is analogous Alzheimer's disease; increased brain activity in AD could be related to a compensation mechanism due to the process of neurodegeneration
- \checkmark EEG amplitude synchronization is similar in PD-FoG and PD+FoG- although both groups are generally quite different in clinical terms
- \checkmark Perhaps: FoG risk changes on daily basis where cortical areas switch between 'prone-to-FoG' vs. non-FoG states (this could be monitored by EEG synchronization networks and treated by DBS)