Network dynamics driving cancer metastasis: from design principles to therapeutic approaches

Mohit Kumar Jolly, PhD Assistant Professor, Centre for BioSystems Science and Engineering Indian Institute of Science (IISc), Bangalore, India <u>mkjolly@iisc.ac.in</u>

July 29, 2022 International Summer Institute on Network Physiology (ISINP) 2022

Metastasis : the cause of 90% of all cancer deaths

Metastasis has extremely high attrition (> 99.9%) rates.

What traits cells need to successfully metastasize?

We need **a dynamic and systems-level understanding** of the process to identify how cells alter these multiple traits together

Credits: Atchuta Srinivas Duddu

Phenotypic plasticity and non-genetic heterogeneity

Cellular/Phenotypic plasticity: Ability of cells to switch their phenotype/behavior reversibly in response to environmental conditions

Huang *et al.* Development 2009 Granados *et al.* Int J Mol Sci 2020

Open questions about plasticity & heterogeneity in cancer

- How many states can cancer cells exist in?
- How do they switch among these states?
- How do they coordinate behavior among these different axes?
- Can we suggest ways to control plasticity and heterogeneity in a dynamic evolving system?

Why are biological networks designed the way they are?

> Hari *et al. NPJ Sys Bio Appln 2020* Duddu *et al. J R Soc Interface 2020* Hati *et al. Phys Biol 2021* Chauhan*, Ram* *et al. eLife 2021* Hebbar*, Moger* *et al. bioRxiv 2021* Hari *et al. bioRxiv 2021*

Design

principles of

networks for

phenotypic

plasticity

Phenotypic plasticity & heterogeneity in CSB lab

Biotechnology
Electrical Engineering
Bioinformatics
Physics
Mathematics
Cancer Biology

Cancer **Systems Biology** (CSB) Lab Emergent multi-scale spatio temporal behavior in tumor

Mechanisms of phenotypic plasticity/ heterogeneity

What regulatory networks enable phenotypic plasticity and heterogeneity?

Subbalakshmi A *et al. Front Oncol*Sahoo*, Singh* *et al. J Clin Med*Subbalakshmi *et al. Cells Tissues Organs*Subbalakshmi *et al. Cancers*Pillai & Jolly, *iScience*Duddu *et al. bioRxiv*

> What implications does phenotypic heterogeneity have on tumor progression at diverse length, time scales?

Chakraborty *et al. Front Bioeng Biotech 2020* Chakraborty *et al. Transl Oncol 2021* Singh *et al. Entropy 2021* Sahoo *et al. NAR Cancer 2021* Mandal *et al. Biomolecules 2022* Jain *et al. Biomolecules 2022*

S C Tripathi Samir Hanash S A Mani

A Rangarajan Ramray Bhat Adithya Chedere Saurav Kumar

Jason A Somarelli Andrew Armstrong

TIFR Centre for Interdisciplinary Sciences Basil Thurakkal

Queensland University of Technology

Pritha Ray Ajit Dhadve

Rik Thompson

Sugandha Bhatia

Ravi Salgia Prakash Kulkarni

Sandeep Singh Kavya Vipparthi

Engineers

Department of Science & Technology

Herbert Levine Jose N Onuchic Shubham Tripathi Wen Jia Federico Bocci

> Kishore Hari Sarthak Sahoo Maalavika Pillai Lakshya Chauhan Gubbala Udayram Paras Jain Atchuta S Duddu Divyoj Singh Susmita Mandal Subbalakshmi A R Srinath Muralidharan

Partha Sharthi Dutta Sudipta Sinha Sukanta Sarkar

Caterina La Porta Stefano Zapperi Franc Font-Clos

EMT/MET: The engine of metastasis

Adhere to neighbors Do NOT migrate or invade Epithelial (E)

Do NOT adhere to neighbors Migrate and invade Mesenchymal (M)

Mesenchymal-to-Epithelial Transition (MET)

Secondary tumor

Epithelial-to-Mesenchymal Transition (EMT)

Scheel & Weinberg, Semin Cancer Bio 2012

Role of EMT in cancer metastasis (2002 – 2012)

Is EMT/MET a binary process?

Mani *et al.* PNAS 2007

Network that controls EMT/MET

- Each arrow/bar indicates a quantitative input-output relationship.
- Such models have been extensively built for simpler microorganisms.
- Can we decode the emergent properties of these nonlinear interactions?

Mathematical model formulation

Lu*, Jolly* et al. PNAS 2013

Model prediction: EMT is NOT binary

Mathematical modeling for EMT dynamics

Experimental validation:

H1975, T=2 months

Jolly et al. Oncotarget 2016

10 GFP

101

EpCAM

Predictions from mathematical model:

- 1. Cells can stably exist in hybrid E/M state
- 2. Isogenic cells can exist in different EMT states
- 3. Cells can 'spontaneously' switch their states

Lu*, Jolly* et al. PNAS 2013

Ruscetti et al. Oncogene 2016

Hybrid E/M phenotype(s) seen in other math models too

Xing *et al.* Biophys J 2013 Steinway *et al.* NPJ Sys Biol Appl 2015 Hong *et al.* PLoS Comp Biol 2015 Jolly *et al.* Oncotarget 2016 Huang *et al.* PLoS Comp Biol 2017 Font-Clos *et al.* PNAS 2018 Silveira *et al.* FEBS J 2019 Hari *et al.* NPJ Sys Biol Appl 2020

Hybrid E/M phenotype(s): 'fittest' for metastasis?

Jolly et al. J R Soc Interface 2014 Grosse-Wilde et al. PLoS One 2015 Bierie et al. PNAS 2017 Pastushenko et al. Nature 2018 Kroger et al. PNAS 2019 Lu & Kang, Dev Cell 2019 Pastushenko et al. Nature 2021

Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells

Cornelia Kröger^a, Alexander Afeyan^{a,b}, Jasmin Mraz^{a,c}, Elinor Ng Eaton^a, Ferenc Reinhardt^a, Yevgenia L. Khodor^d, Prathapan Thiru^a, Brian Bierie^a, Xin Ye^{a,e}, Christopher B. Burge^d, and Robert A. Weinberg^{a,f,g,1}

From EMT (2002-2012) to EMP (Epi-Mes Plasticity; 2013-now)

Pastushenko & Blanpain, Trends Cell Biol 2019 Pastushenko *et al.* Nature 2018

Yu *et al.* Science 2013 Kroger *et al.* PNAS 2019

Clinical relevance of hybrid E/M phenotype(s)

Single-cell migration is very rare, if any, in cancer

Co-expression of ZEB1 and membranous E-cad - a 'partial EMT' status of 'tumor buds'

Godin et al. Cancers 2021; Bronsert et al. J Pathol 2014; Yu et al. Science 2013

Ongoing questions...

Why are hybrid E/M cells more plastic than E, M?

EMP networks largely contain two "teams"

- Nodes: Epithelial, Mesenchymal, Input/output (Signal/Effector)
- Edges: Activation, Inhibition
- Mostly activation within a "team", but inhibition across the two "teams"

Presence of teams is specific to EMP networks

EMP networks give rise to two types of states

Which phenotypes (E, M, hybrid) are more frustrated or coherent?

Terminal states (E, M) more stable than hybrid E/M

Terminal state more coherent, frequent; less frustrated than hybrid

"Teams" stabilize terminal states (E, M) specifically

Summary (Teams in EMP networks)

"Teams" shape the landscape enabling higher plasticity and heterogeneity of hybrid E/M phenotypes

Hari et al. bioRxiv 2021: 472090

Kishore Hari

'Teams' seen in other cell-state switching networks?

I (HGF, NF-κB, Wnt, Notch, p53, TGF-β, HIF1α)

Artwork Credit: Atchuta S Duddu

Lu*, Jolly* et al. PNAS 2013

Sahoo*, Singh* et al. J Clin Med 2020

Sarthak Sahoo (BS/MS, IISc, Bio)

Chauhan*, Ram* et al. eLife 2021

TEX3 N/SG1 TFE3 JUN HLF4 HFIC M22F1 SMAC3 ETV5 FOS MITP Log Pure Spin Back of the full of the Proliferative-invasive switch in melanoma

Pillai & Jolly, iScience 2021

Why do 'teams' exist?

Chauhan*, Ram*, Hari & Jolly MK, eLife 2021

Why do 'teams' exist?

33 nodes, 357 edges - SCLC

What if we shuffle edges in the entire network (thus breaking teams)?

Allow limited number of cell-states ("Controlled enthusiasm")

Chauhan*, Ram*, Hari & Jolly MK, eLife 2021

Why do 'teams' exist?

Couple the axes of plasticity: EMP and drug resistance in ER+ breast cancer

Sahoo et al. NAR Cancer 2021

Suggesting combinatorial therapies for ER+ breast cancer

Model predictions currently undergoing experimental validation

Summary

- Multistable dynamics of underlying networks driving cell-state switching
- \Rightarrow Phenotypic plasticity
- \Rightarrow Non-genetic heterogeneity
- 'Design principles' of such networks:
- 1. "Teams" exist in multiple such networks
- 2. "Teams" offer canalization of phenotypes
- These networks can explain adaptive, heterogeneous response to drug treatment
- These networks as platforms to predict combination and sequence of therapies?

Pillai & Jolly, **iScience** 2021

Chauhan*, Ram* et al. eLife 2021

Dynamical vs. Static hallmarks of Cancer

Cancer is a complex, dynamic, adaptive system (and therefore needs to looked at such).

Math models, coupled with experimental data, have steered our understanding of such systems (weather predictions, finance etc.)

Acknowledgements: Cancer Systems Biology Lab

Any questions/comments/ suggestions welcome!

mkjolly@iisc.ac.in

Background of CSB members Biotechnology, Engineering (Electrical, Mechanical), Bioinformatics, Physics, Mathematics, Biology, Chemistry