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Theoretical design and implementation of the framework of Information Dynamics:

vasculature

YXZI →

Y: target; X,Z: sources

L Faes, G Nollo, A Porta: 'Information decomposition: a tool to break down cardiovascular and cardiorespiratory complexity', Complexity and Nonlinearity in Cardiovascular Signals, Springer; 2017, pp.87-113

Exploring Network Physiology with Information Theory

• Framework of Information Dynamics to assess physiological interactions

New Information
complexity

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks', Entropy 2017, 19(1), 5



The framework of Information Dynamics: Developments

HRV

SAP, DAP

EEG

MSNA

RESP 
(vol, freq)

LFP, neural spikes

ECoG

micro

meso

macro

CBFV

Methodological developments

narrowband

multiband

whole-band

scale

time

න𝑑𝑓

න𝑑𝑡

Levels of system description

Information 
modification

Information 
transfer

Information 
storage

node 
activity

edge 
connectivity

higher order 
structures

Levels of system integration

3

• The measures of information dynamics are defined for discrete-time processes, and have been developed

mostly in the time domain

• Aim: to generalize the framework of information dynamics to assess pairwise and higher-order

physiological interactions in the time and frequency domains

• Extensions of the framework of Information Dynamics:



• Assumption: i.i.d. random variables (temporal independence) STATIC analysis

Information-theoretic description of physiological time series: STATIC ANALYSIS 
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Dynamic System 𝓧 = {𝒳1, 𝒳2, … ,𝒳𝑀}



𝓧

𝒳𝑀

𝒳1

Vector of random variables 𝑿 = [𝑋1𝑋2⋯𝑋𝑀]

𝒳2

• Realization of 𝑿: 𝑀 time series of length 𝑁, collected in the data matrix 𝐗 =

𝑥1,1 … 𝑥𝑀,1
⋮ ⋱ ⋮

𝑥1,𝑁 … 𝑥𝑀,𝑁

𝑁1 …



𝑥1,1 𝑥1,𝑁



𝑋2

𝑋𝑀

𝑋1

• Assumption: stationarity: the i.i.d. variables are studied from a single multivariate time series 𝐗

• Static analysis:

temporal correlations disregarded; interactions computed at lag 0 

…



Information-theoretic analysis of static interactions
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𝐼 𝑋1; 𝑋2 = 𝔼 𝑙𝑜𝑔
ሻ𝑝(𝑥1, 𝑥2

ሻ𝑝(𝑥1 ሻ𝑝(𝑥2
= 𝐻 𝑋1 + 𝐻 𝑋2 − 𝐻(𝑋1, 𝑋2ሻ

𝐻(𝑋1ሻ = 𝔼 log
1

𝑝(𝑥1ሻ

𝐼 𝑋1; 𝑋2; 𝑋3 = 𝐼 𝑋1; 𝑋2 + 𝐼 𝑋1; 𝑋3 − 𝐼 𝑋1; 𝑋2, 𝑋3

𝐼 𝑋1; 𝑋2

𝐻(𝑋2ሻ𝐻(𝑋1ሻ

𝐼 𝑋1; 𝑋2; 𝑋3𝐻(𝑋2ሻ𝐻(𝑋1ሻ

𝐻(𝑋3ሻ

𝐼 𝑋1; 𝑋3𝐼 𝑋1; 𝑋2 𝐼 𝑋1; 𝑋2, 𝑋3

• Interactions of order 3: INTERACTION INFORMATION

• Interactions of order 2: MUTUAL INFORMATION

• Information content: ENTROPY

𝐼 𝑋1; 𝑋2; 𝑋3 > 0: redundancy 𝐼 𝑋1; 𝑋2; 𝑋3 < 0: synergy

+ − =

[W McGill, Psychometrika 19, 1954]

𝐼 𝑋1; 𝑋2, 𝑋3 < 𝐼 𝑋1; 𝑋2 + 𝐼 𝑋1; 𝑋3 𝐼 𝑋1; 𝑋2, 𝑋3 > 𝐼 𝑋1; 𝑋2 + 𝐼 𝑋1; 𝑋3



Information-theoretic analysis of HIGHER-ORDER interactions

• Interactions of order 3: O-INFORMATION

Ω 𝑋𝑁 = Ω 𝑋−𝑗
𝑁 + ∆ 𝑋𝑗; 𝑋−𝑗

𝑁

∆ 𝑋𝑗; 𝑋−𝑗
𝑁 = 

𝑚=1
𝑚≠𝑗

𝑁

𝐼 𝑋𝑗; 𝑋−𝑚𝑗
𝑁 + (2 − 𝑁ሻ𝐼 𝑋𝑗; 𝑋−𝑗

𝑁

𝑋𝑁 = {𝑋1, … , 𝑋𝑁}

Ω 𝑋3 = 𝐼 𝑋1; 𝑋2; 𝑋3

∆ 𝑋4; {𝑋1, 𝑋2, 𝑋3}

• 𝑁 = 4 :

𝐼 𝑋4; 𝑋1, 𝑋2 𝐼 𝑋4; 𝑋1, 𝑋3 𝐼 𝑋4; 𝑋2, 𝑋3 𝐼 𝑋4; 𝑋1, 𝑋2, 𝑋3𝐻(𝑋2ሻ𝐻(𝑋1ሻ

𝐻(𝑋3ሻ𝐻(𝑋4ሻ

∆ 𝑋4; {𝑋1, 𝑋2, 𝑋3} = 𝐼 𝑋4; 𝑋1, 𝑋2 + 𝐼 𝑋4; 𝑋1, 𝑋3 + 𝐼 𝑋4; 𝑋2, 𝑋3 − 2𝐼 𝑋4; 𝑋1, 𝑋2, 𝑋3

[FE Rosas et al, Phys Rev E 100, 2019]

+ −2+

6
• The sign of ∆ 𝑋𝑗; 𝑋−𝑗

𝑁 and Ω 𝑋𝑁 reflects the redundant (+) or synergistic (-) nature of the interactions in 𝑋𝑁

=

• 𝑁 = 3 :
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Dynamic System 𝓧 = {𝒳1, 𝒳2, … ,𝒳𝑀}




Vector of random processes 𝑿 = [𝑋1𝑋2⋯𝑋𝑀]

𝑛 − 1, 𝑛 − 2
𝑛

𝑋2
𝑋2,𝑛

𝑋𝑀

𝑋𝑀,𝑛

𝑋2,𝑛
−

𝑋𝑀,𝑛
−

𝑋1
𝑋1,𝑛

𝑋1,𝑛
−

Information-theoretic description of physiological time series: DYNAMIC ANALYSIS 

• Limitation of static analysis of random variables: the temporal information is disregarded

• Dynamic analysis:

• Assumption: i.d. random variables Dynamic analysis

• Realization of 𝑿: 𝑀 time series of length 𝑁, collected in the data matrix 𝐗 =

𝑥1,1 … 𝑥𝑀,1
⋮ ⋱ ⋮

𝑥1,𝑁 … 𝑥𝑀,𝑁

• Assumption: stationarity: the i.d. variables are studied from a single multivariate time series 𝐗

• temporal correlations are explicitly considered       study of dependencies between 𝑋𝑖,𝑛 and 𝑋𝑗,𝑛
−

𝓧

𝒳𝑀

𝒳1

𝒳2

…



Information-theoretic analysis of dynamic interactions: PAIRWISE ANALYIS
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• Interactions of order 2: MUTUAL INFORMATION RATE (MIR)

• Information content: ENTROPY RATE

𝐻𝑋1 ≜ lim
𝑁→∞

1

𝑁
𝐻 𝑋1,𝑛:𝑛+𝑁 = 𝐻(𝑋1,𝑛|𝑋1,𝑛

− ሻ

𝐼𝑋1;𝑋2 ≜ lim
𝑁→∞

1

𝑁
𝐼 𝑋1,𝑛:𝑛+𝑁; 𝑋2,𝑛:𝑛+𝑁 = 𝐻𝑋1 + 𝐻𝑋2 − 𝐻𝑋1,𝑋2

𝐻(𝑋1,𝑛
− ሻ

𝐻(𝑋1,𝑛ሻ𝐻(𝑋2,𝑛ሻ

𝐻(𝑋2,𝑛
− ሻ

𝐻(𝑋1,𝑛
− ሻ

𝐻(𝑋1,𝑛ሻ

𝐼𝑋1;𝑋2𝐻𝑋1 𝐻𝑋2 𝐻𝑋1,𝑋2

+ − =

Complexity measure

Measure of dynamic coupling

𝐻𝑋1 = 𝐻(𝑋1,𝑛|𝑋1,𝑛
− ሻ



Assessment of Higher-Order interactions in random processes
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• Interactions of order 3:

Ω𝑋𝑁 = Ω𝑋−𝑗
𝑁 + ∆𝑋𝑗;𝑋−𝑗

𝑁

∆𝑋𝑗;𝑋−𝑗
𝑁 = 

𝑚=1
𝑚≠𝑗

𝑁

𝐼𝑋𝑗;𝑋−𝑚𝑗
𝑁 + (2 − 𝑁ሻ𝐼𝑋𝑗;𝑋−𝑗

𝑁

𝑋𝑁 = {𝑋1, … , 𝑋𝑁} • 𝑁 = 3:

Ω𝑋3 = ∆𝑋3;{𝑋1,𝑋2}= 𝐼𝑋3;𝑋1 + 𝐼𝑋3;𝑋2 −𝐼𝑋3;{𝑋1,𝑋2}

∆𝑋4;{𝑋1,𝑋2,𝑋3}= 𝐼𝑋4;𝑋1,𝑋2 + 𝐼𝑋4;𝑋1,𝑋3 + 𝐼𝑋4;𝑋2,𝑋3 − 2𝐼𝑋4;𝑋1,𝑋2,𝑋3

Ω𝑋4 = Ω𝑋3 + ∆𝑋4;{𝑋1,𝑋2,𝑋3}

• Recursive definition:

• 𝑁 = 2: Ω𝑋2 = 0

Interaction information rate

• 𝑁 = 4: O-information rate

• All measures of dynamic information quantifying high-order interactions can be computed as

the sum of MIR terms involving two or more processes 𝑋𝑖

𝐼𝑍1;𝑍2

• The sign of Ω𝑋𝑁 and ∆𝑋𝑗;𝑋−𝑗
𝑁 reflects the redundant (+) or synergistic (-) nature of the interactions in 𝑋𝑁

O-INFORMATION RATE (OIR)

• Computation amounts to quantify , with 𝑍1 = 𝑋𝑗 , 𝑍2 = 𝑋−𝑚𝑗
𝑁 , 𝑗 ∈ 1, … , 𝑁 ,𝑚 ∈ 0,1, … , 𝑁

• COMPUTATION:

L Faes, G Mijatovic, Y Antonacci, R Pernice, C Barà, L Sparacino, M Sammartino, A Porta, D Marinazzo, S Stramaglia, 'A new framework for the time- and frequency-domain 
assessment of high-order interactions in brain and physiological networks', arXiv:2202.04179, 2022



Information-theoretic analysis of dynamic interactions: MIR EXPANSION
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𝐼 𝑍1,𝑛; 𝑍2,𝑛
− |𝑍1,𝑛

− = 𝑇𝑍2→𝑍1

𝐼 𝑍2,𝑛; 𝑍1,𝑛
− |𝑍2,𝑛

− = 𝑇𝑍1→𝑍2

𝐼 𝑍1,𝑛; 𝑍2,𝑛|𝑍1,𝑛
− , 𝑍2,𝑛

− = 𝐼𝑍1∙𝑍1

𝐼𝑍1;𝑍2 = 𝑇𝑍1→𝑍2 + 𝑇𝑍2→𝑍1 + 𝐼𝑍1∙𝑍2

coupling causal

interaction

instantaneous

causality

• Information transfer (Transfer Entropy, TE):  𝑇𝑍1→𝑍2 , 𝑇𝑍2→𝑍1

• Expansion of the Mutual Information rate

𝐻(𝑍1,𝑛
− ሻ

𝐻(𝑍1,𝑛ሻ𝐻(𝑍2,𝑛ሻ

𝐻(𝑍2,𝑛
− ሻ

𝐼𝑍1;𝑍2 = 𝐼 𝑍1,𝑛; 𝑍2,𝑛
− |𝑍1,𝑛

− + 𝐼 𝑍2,𝑛; 𝑍1,𝑛
− |𝑍2,𝑛

− + 𝐼 𝑍1,𝑛; 𝑍2,𝑛|𝑍1,𝑛
− , 𝑍2,𝑛

−

• Information-theoretic decomposition of the Mutual information Rate:

• Dynamic Information Exchange (MIR):  𝐼𝑍1;𝑍2

• Instantaneous information sharing: 𝐼𝑍1∙𝑍2

[D Chicharro, Biol Cyb 105, 2011]

𝐼𝑍1;𝑍2 Transfer Entropies:
[T Schreiber, Phys Rev Lett 85, 2000]

Information shared at lag zero:



Computation of MIR and OIR based on linear Vector Autoregressive Models
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• 𝑄 random processes 𝑌 = {𝑌1, … , 𝑌𝑄} collected in 𝑀 blocks 𝑋1, … , 𝑋𝑀

• Vector autoregressive (VAR) representation of 𝑌: 𝑌𝑛 = 

𝑘=1

𝑝

𝐴𝑘 𝑌𝑛−𝑘 + 𝑈𝑛

• Reduced VAR models for 𝑍 = {𝑍1, 𝑍2} collecting some of the 𝑋 processes:

𝑍1,𝑛 = 

𝑘=1

∞

𝐶1,𝑘 𝑍1,𝑛−𝑘 + 𝑉1,𝑛 𝑍2,𝑛 = 

𝑘=1

∞

𝐶2,𝑘 𝑍1,𝑛−𝑘 + 𝑉2,𝑛

• Estimation of the innovation covariance matrices

through the theory of state space models: 𝚺𝑊 = 𝔼 𝑊𝑊T , 𝚺𝑉1 = 𝔼 𝑉1𝑉1
T , 𝚺𝑉2 = 𝔼[𝑉2𝑉2

T]

• Computation of TE, instantaneous information and MIR exploiting the analogy between TE and Granger

causality valid for Gaussian processes:

𝐼𝑍1;𝑍2 =
1

2
log

𝚺𝑉1 𝚺𝑉2
𝚺𝑊

𝑇𝑍1→𝑍2 =
1

2
log

𝚺𝑉2
𝚺𝑊22

, 𝑇𝑍2→𝑍1 =
1

2
log

𝚺𝑉1
𝚺𝑊11

𝐼𝑍1∙𝑍2 =
1

2
log

𝚺𝑊11
𝚺𝑊22

𝚺𝑊

𝑌1
𝑌3

𝑌2
𝑌4

𝑌5

…𝑌𝑄 …

𝑋1
𝑋2

𝑋𝑀

𝑌1
𝑌3

𝑌2
𝑌4

𝑌5

…𝑌𝑄 …

𝑧2

𝑍1

[L Barnett et al, Phys Rev E 91, 2015]

[L Barnett et al, Phys Rev Lett 103, 2009]

𝑍𝑛 = 

𝑘=1

∞

𝐵𝑘 𝑍𝑛−𝑘 +𝑊𝑛



Frequency-domain expansion of MIR
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• Discrete-time Fourier transform of 𝑍𝑛 : 𝑍 𝜔 = 𝐈 −

𝑘=1

∞

𝐵𝑘 𝑒
−𝑗𝜔𝑘

−1

𝑊 𝜔 = 𝐇 𝜔 𝑊 𝜔

• Power spectral density of 𝑍𝑛 : 𝐒𝑍 𝜔 = 𝐇 𝜔 𝚺𝑊𝐇
∗ 𝜔 =

𝐒𝑍1 𝜔 𝐒𝑍1𝑍2 𝜔

𝐒𝑍2𝑍1 𝜔 𝐒𝑍1 𝜔

• Frequency-domain measures of TE, Instantaneous information and MIR :

𝑓𝑍2→𝑍1 𝜔 = log
|𝐒𝑍1 𝜔 |

|𝐇11 𝜔 𝚺𝑊11
𝐇11
∗ 𝜔 |

𝑓𝑍1;𝑍2 𝜔 = 𝑓𝑍1→𝑍2 𝜔 + 𝑓𝑍2→𝑍1 𝜔 + 𝑓𝑍1∙𝑍2 𝜔

𝐼𝑍1;𝑍2 =
1

4𝜋
න

−𝜋

𝜋

𝑓𝑍1;𝑍2 𝜔 𝑑𝜔

𝑓𝑍1→𝑍2 𝜔 = log
|𝐒𝑍2 𝜔 |

|𝐇22 𝜔 𝚺𝑊22
𝐇22
∗ 𝜔 |

𝑓𝑍1∙𝑍2 𝜔 = log
|𝐇11 𝜔 𝚺𝑊11

𝐇11
∗ 𝜔 ||𝐇22 𝜔 𝚺𝑊22

𝐇22
∗ 𝜔 |

|𝐒𝑍 𝜔 |

• Integration of the spectral information measures yields the time domain

information measures:

𝐼𝑍1→𝑍2 =
1

4𝜋
න

−𝜋

𝜋

𝑓𝑍1→𝑍2 𝜔 𝑑𝜔

[J Geweke, J Am Stat Ass 77, 1982]

[D Chicharro, Biol Cyb 105, 2011]

coupling

causality 𝑍2 → 𝑍1

causality 𝑍1 → 𝑍2



Time- and frequency-domain OIR based on VAR models
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∆𝑋𝑗;𝑋−𝑗
𝑁 =

1

4𝜋
න

−𝜋

𝜋

𝛿𝑋𝑗;𝑋−𝑗
𝑁 𝜔 𝑑𝜔

Ω𝑋𝑁 = Ω𝑋−𝑗
𝑁 + ∆𝑋𝑗;𝑋−𝑗

𝑁

∆𝑋𝑗;𝑋−𝑗
𝑁 = 

𝑚=1
𝑚≠𝑗

𝑁

𝐼𝑋𝑗;𝑋−𝑚𝑗
𝑁 + (2 − 𝑁ሻ𝐼𝑋𝑗;𝑋−𝑗

𝑁 𝛿𝑋𝑗;𝑋−𝑗
𝑁 𝜔 = 

𝑚=1
𝑚≠𝑗

𝑁

𝑓𝑋𝑗;𝑋−𝑚𝑗
𝑁 𝜔 + (2 − 𝑁ሻ𝑓𝑋𝑗;𝑋−𝑗

𝑁 𝜔

𝜈𝑋𝑁 𝜔 = 𝜈𝑋−𝑗
𝑁 𝜔 + 𝛿𝑋𝑗;𝑋−𝑗

𝑁 𝜔

Time-domain: Frequency-domain:

• Full-frequency integration of the spectral OIR

yields the time-domain OIR:

Ω𝑋𝑁 =
1

4𝜋
න

−𝜋

𝜋

𝜈𝑋𝑁 𝜔 𝑑𝜔

• OIR gradient:

• OIR :

• Framework for the 

evaluation of both pairwise 

and higher-order dynamic 

interactions, in time and 

frequency domains

𝑌1
𝑌3

𝑌2
𝑌4

𝑌5

…𝑌𝑄 …

𝑋1
𝑋2

𝑋𝑀

L Faes, G Mijatovic, Y Antonacci, R Pernice, C Barà, L Sparacino, M Sammartino, A Porta, D Marinazzo, S Stramaglia, 'A new framework for the time- and frequency-domain 
assessment of high-order interactions in brain and physiological networks', arXiv:2202.04179, 2022



OIR Matlab toolbox
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• Toolbox for the computation of time-domain and frequency-domain pairwise and higher-order

interactions in networks of multiple stochastic processes

L Faes, G Mijatovic, Y Antonacci, R Pernice, C Barà, L Sparacino, M Sammartino, A Porta, D Marinazzo, S Stramaglia, 'A new framework for the time- and frequency-domain 
assessment of high-order interactions in brain and physiological networks', arXiv:2202.04179, 2022

http://www.lucafaes.net/OIR.html



Theoretical Example – VAR model
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• Simulation of 𝑄 = 10 random processes grouped in 𝑀 = 5 blocks

𝑋1

𝑋2
𝑋3

𝑋4

𝑋5

• 𝑁 = 1: PSD 

• 𝑁 = 2: MIR 

• 𝑁 = 3: IIR • 𝑁 = 4: OIR • 𝑁 = 5: OIR 



Application: cardiovascular, cerebrovascular and respiratory interactions
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Processes and time series:

𝑋
1
=
𝐻

𝑋
2
=
𝑆

𝑋
2
=
𝐷

𝑋
4
=
𝑅

𝑋
5
=
𝐹

𝒳4

𝒳5

𝒳2

𝒳3

Cardiac

Respiratory

Cerebral

Vascular

𝒳1

• 18 healthy subjects, 

resting supine position 

Systems Signals

ECG

continuous

arterial 

pressure

respiratory

airflow

transcranial

doppler

Experimental protocols

o Spontaneous breathing (SB)

Controlled breathing:

o 10 breaths/min (CB10)

o 15 breaths/min (CB15)

o 20 breaths/min (CB20)

• 13 healthy subjects, 

spontaneous breathing

o Supine position (REST)

o Upright position (TILT)

Data Analysis

• Stationary series, N=250

• VAR model fitting

• OIR (time, spectral)
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• High-order interactions during spontaneous and controlled breathing
𝛿
𝐻
;𝑆
,𝑅

𝛿
𝐻
→
𝑆
,𝑅

𝛿
𝑆
,𝑅
→∙
𝐻 ∆𝐻;𝑆,𝑅 ∆𝐻→𝑆,𝑅∆

𝑆,𝑅→
∙
𝐻

∆𝐻;𝑆,𝑅
∆𝐻→𝑆,𝑅∆

𝑆,𝑅→
∙
𝐻 ∆𝐻;𝑆,𝑅 ∆𝐻→𝑆,𝑅∆

𝑆,𝑅→
∙
𝐻

• The spectral OIR gradients peak at the respiratory frequency, revealing dominant redundancy

• Physiologically, redundancy is explained by the mechanical effects of R on S, transmitted to H via the baroreflex

• OIR values in the LF band vary significantly across conditions, with prevalent synergy at CB10 and prevalent redundancy

at CB20

LF, 0.04-0.12 Hz HF, fRESP±0.04 Hz

whole-band, 0-0.4 Hz 𝐻
𝑆

𝑅
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• High-order

interactions at

rest and during

postural stress
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• The spectral OIR is positive in both LF and HF bands, revealing dominant redundancy

• The spectral OIR is higher in the HF band, suggesting a role of respiration in driving redundant interactions

• In the LF band, redundancy is higher for multiplets including H,S,D,F, and tends to increase with head-up tilt
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• Public dataset: http://www.neurotycho.org

• Signals from a monkey in resting awake state (REST) and during anesthesia (ANES)

• ECoG signals: 1000 Hz, downsampling 250 Hz; 160 epochs of 2 sec in each condition

𝑌𝑛 = 

𝑘=1

𝑝

𝐴𝑘 𝑌𝑛−𝑘 + 𝑈𝑛

• 𝑄 = 10 random processes 𝑌 = {𝑌1, … , 𝑌10}
grouped in 𝑀 = 5 blocks 𝑋1, … , 𝑋5

𝑋2: parietal

𝑋3: temporal

𝑋5: high visual

• Five regions of the Default Mode Network (2 bipolar signals from each region):

• OIR for all multiplets of order 3,4,5

• Spectral OIR integrated in the 𝛿 (0.2-3 Hz), 𝜃 (4-7 Hz), 𝛼 (8-12 Hz), 𝛽 (13-30 Hz), 𝛾 (31-70 Hz) bands,

and in the whole-band 0-70 Hz (time-domain OIR)



Application: ECoG signals in the anesthetized macaque monkey
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• High-order interactions among brain waves during wakefulness and anesthesia
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,𝑋
3
,𝑋
4
,𝑋
5 • The system is dominated by redundancy

• Results support the integration theory suggesting that there is a high integration of the brain rhythms in the conscious

state that disappears during the unconscious state, which is rather characterized by slow brain waves

• Multiplets involving the prefrontal cortex (𝑋1) display higher

redundancy during ANES in 𝛿 and 𝛾 bands

• Multiplets involving the parietal, temporal and visual cortex

(𝑋2−𝑋5) display lower redundancy during ANES in 𝛼 and 𝛽 bands



Application: scalp EEG connectivity during motor execution
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• Public dataset: https://physionet.org/content/eegmmidb

• Scalp EEG from 20 subjects in resting awake state (REST) and during right-fist motor execution (RIGHT)

• Sampling 160 Hz; 15 trials of 4 sec in each condition

• Four scalp regions associated with motor preparation and execution

ipsilateralcontralateral

𝑌𝑛 = 

𝑘=1

𝑝

𝐴𝑘 𝑌𝑛−𝑘 + 𝑈𝑛

• 𝑀 = 4 scalar random processes

• OIR for all multiplets of order 3,4

• Spectral OIR integrated in the 𝛼 (8-12 Hz) and 𝛽 (13-30 Hz) bands involved in motor execution



Application: scalp EEG connectivity during motor execution
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• High-order 

interactions 

among brain 

waves during 

motor 

execution

• Triplets involving two central and one lateral electrode display redundancy

• The multiplets Cz-C4-C3 and Fz-Cz-C4-C3 display synergy, reflecting ipsilateral and contralateral high-order interactions

between the left and right brain hemispheres and the central regions

• Synergy is evidenced in the 𝛼 and 𝛽 bands linked to event-related desynchronization, and decreases during motor execution
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Information dynamics:
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