Functional connectivity in the human motor system

Tjeerd Boonstra

Faculty of Psychology and Neuroscience Maastricht University

Neuroscience Research Australia

Awarding NARSAD Grants

The human musculoskeletal system

~200 bones

How does the central nervous system control this complex system?

Human movement is low dimensional

Nikolai Bernstein (1896 – 1966)

Motor equivalence problem: Humans can perform a movement in multiple ways in order to achieve the same goal. How does the nervous system chooses a solutions from this abundant set of possibilities?

Human movement is low dimensional

Movement are low dimensional and can be explained by a small number of factors

→ Activation patterns of different muscles (or movement patterns of different joints) are correlated

Controlling the musculoskeletal system

constraints imposed by nervous system

Constraints imposed by central nervous system

- Muscle synergies are building blocks that generate muscle activation patterns
- Muscle synergies may be implemented in spinal cord

Ting and McKay, 2007, TINS 17

Controlling the musculoskeletal system

constraints imposed by nervous system

Controlling the musculoskeletal system

- Degree of freedom problem (DOFs) $\rightarrow 2^{600}$ activation patterns
- Motor control problem simplified if DOFs are coupled
- Where do these couplings arise from?

Use network analysis to investigate connectivity in neuromuscular system Turvey (1990) Am Psychol 45

Functional connectivity analysis

Structural connectivity: pattern of anatomical links

Functional connectivity: statistical dependencies

Effective connectivity: causal interactions

Friston (1994) Hum Brain Mapp

Spikes of alpha motor neurons are coupled

- Histograms show increased likelihood that two motor neurons spike together
- Simultaneous spikes due to last-order branch axons

also in the frequency domain

- Coupling between motor neurons can also be using coherence analysis
- Beta-band coherence associated with central peak of cross-correlation

Complex network analysis

Brain networks

Social networks

Muscle networks

- Muscle are the nodes of the network
- Intermuscular coherence gives the edge weights for functional network
- Anatomical connections between muscles for anatomical network
- Compare functional and anatomical networks

Experimental protocol

- Map networks of 36 muscles distributed across the body
- Record surface EMG from 14 participants during postural task
- Two experimental manipulations:
 - 1. Pointing (no, unimanual, bimanual)
 - 2. Stability (normal, anterior-posterior, medial-lateral)

Approach to map functional muscle networks

Intermuscular coherence

Adjacency matrix

Boonstra et al. (2015) Sci Rep 5

Functional muscle network

Extract four components using NMF 0-3, 3-11, 11-21 and 21-60 Hz NMF gives edge weights at each frequency Distinct network topologies across frequencies

Functional muscle network

Community detection in multiplex networks (Didier et al, 2015)

6 modules

- 1. right upper arm
- 2. bilateral fore arm
- 3. Torso
- 4. right upper leg
- 5. left leg
- 6. bilateral lower leg

Approach to map anatomical muscle networks

mapping origin and insertion of muscles

network of human head

network of whole body

Esteve-Altava et al (2015) Sci Rep 5

Murphy et al (2016) arXiv 1612.06336

bones

Anatomical muscle network

Map network for 36 muscles for which we recorded EMG Modules extracted using Louvain method (Q = 0.38)

5 modules

- 1. right arm
- 2. left arm
- 3. torso
- 4. right leg
- 5. left leg

Kerkman et al (2018) Sci Adv

Comparing anatomical and functional networks

Estimate anatomical distance between muscles Functional connectivity decreases with anatomical distance

Comparing anatomical and functional networks

Similarities

- Similar community structure
- Adjusted Rand index = 0.37,
 P < 0.001

Differences

- Bilateral module of forearm muscles in functional networks
- Bilateral module of lower leg muscles in functional networks

Implications

Intermuscular coherence

Intermuscular coherence reflects
 common input to spinal motor neurons

Functional muscle networks

- Shaped by anatomical constrains of musculoskeletal system
- Bilateral functional connectivity reflect neural mechanisms/modulations

Participants generate same force with both hands

Corticomuscular coherence at ~20 Hz between motor cortex and hand muscle \rightarrow **corticospinal pathway**

Intermuscular coherence at ~10 Hz between bilateral hand muscles → non-cortical origin

Boonstra et al, 2009, Neurosci Lett

Control cursor on screen by coordination left and right force

Experimentally manipulate the level of bimanual coordination

De Vries et al, 2016, *J Neurophysiol*

Source reconstruction of EEG shows activity in contralateral sensorimotor cortex

De Vries et al. 2016 J Neurophysiol

Suggest flexible involvement of two distinct pathways

De Vries et al, 2016, J Neurophysiol

Multiple ascending and descending pathways

Conclusions

- Functional connectivity and network analysis to map and compare different types of connections between brain and muscle
- Functional connectivity analysis shows coherence at multiple distinct frequencies
- Functional connectivity shaped by the anatomical constraints of musculoskeletal system
- Task-dependent changes in functional connectivity reveal the contribution of different neural pathways
- Study functional integration (i.e. coupling of distributed areas of CNS into coherent patterns) within the human sensorimotor system

Collaborations

Jennifer Kerkman

Ingmar de Vries

Leonardo Gollo

Luca Faes

Andreas Daffertshofer

Dick Stegeman

Michael Breakspear

Daniele Marinazzo

E: tjeed.boonstra@maastrichtuniversity.nl; T: @TjeerdWBoonstra