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Summary

Hierarchical metrics of aging

Brain partition using structure-function
Macro scale physiological brain aging
Chronological and brain connectome age
The fronto-striato-thalamic (FST) circuit



Hierarchical Model of the Metrics of Aging
(Ferrucci et al., Circulation Research. 2018;123)




The Metrics of Aging

Functional Aging (impact on daily life)
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Phenotypic Aging (phenotypes that change)

Body Composition
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Biological Aging (root mechanisms)

o Molecular Damage

o Defective Repair

o Energy Exhaustion

o Signal/Noise Reduction
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Time and the Metrics of Aging, Volume: 123, Issue: 7, Pages: 740-744, DOI: (10.1161/CIRCRESAHA.118.312816)




Rate of Change of Metric

25 Elements of Biological Aging

& Resilience mechanisms

ﬁ' Stressors

Time Since Bi:h

Time and the Metrics of Aging, Volume: 123, Issue: 7, Pages: 740-744, DOI: (10.1161/CIRCRESAHA.118.312816)



Function:

Preservation of function

Full Biological
Compensatic Decompensation
And Biologi and Phenotypic

Resilient Resilience

Time and the Metrics of Aging, Volume: 123, Issue: 7, Pages: 740-744, DOI: (10.1161/CIRCRESAHA.118.312816)



TWO CLASSES OF BRAIN NETWORKS




TWO CLASSES OF BRAIN NETWORKS

v Structural (anatomical)
connectivity

v" Functional connectivity

v'  Effective connectivity
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STRUCTURAL CONNECTIVITY

Axons measure ~um in
width

They group together in
bundles that traverse the
white matter, mm scale

We cannot image
individual axons but we
can image bundles with
diffusion MRI

en‘drites:

From the National Institute on Aging

From Gray's Anatomy: IX. Neurology

M www.jesuscortes.info jesusmcortes
http:// J _J



STRUCTURAL CONNECTIVITY

Water diffuses differently across different brain tissues
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STRUCTURAL CONNECTIVITY

Use local diffusion orientation at each voxel to determine pathway between
regions, a.k.a. tractography
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STRUCTURAL CONNECTIVITY

Measures providing SC

Number of fiber
Volume

Density

Fiber length
Fractional Anisotropy
Mean Diffusivity
Radial Diffusivity
Axial Diffusivity

DN NI NI NI NI N NI N

Bonifaxi.... et al Cortes, Human Brain Mapping 2018; Diez... and Cortes, Network Neuroscience 2017; Diez |, ...
,and Cortes JM, Sci Rep, 2015; Alonso-Montes C, ..., and Cortes JM, Front Psychol, 2015; Erramuzpe A, ..., and
Cortes JM, J Neural Eng, 2015; Erramuzpe A, ..., and Cortes JM, F1000 Res, 2015 ; Diez |, ..., and Cortes JM, Brain
Conn, 2015; Maki-MarttunenV, ..., Cortes JM, ..., and Chialvo DR, Front Neuroinf, 2013



FUNCTIONAL CONNECTIVITY

e
/!,
ﬁ Measures providing FC:

v Pearson Correlation
v’ Partial Correlation

v" Mutual Information
v' Coherence

v Phase synchronization

Blood Oxygen Level Dependent Signal

time

Bonifaxi.... et al Cortes, Human Brain Mapping 2018; Diez... and Cortes, Network Neuroscience 2017; Diez |, ...
,and Cortes JM, Sci Rep, 2015; Alonso-Montes C, ..., and Cortes JM, Front Psychol, 2015; Erramuzpe A, ..., and
Cortes JM, J Neural Eng, 2015; Erramuzpe A, ..., and Cortes JM, F1000 Res, 2015 ; Diez |, ..., and Cortes JM, Brain
Conn, 2015; Maki-Marttunen'V, ..., Cortes JM, ..., and Chialvo DR, Front Neuroinf, 2013



Blood Oxygen Level Dependent Signal

time

FUNCTIONAL CONNECTIVITY

Similarity between time series of different regions (also distant ones)
Symmetric (in general)
Highly dynamical (unlike SC)

v Pearson Correlation
v’ Partial Correlation

v" Mutual Information
v' Coherence

v Phase synchronization

Bonifaxi.... et al Cortes, Human Brain Mapping 2018; Diez... and Cortes, Network Neuroscience 2017; Diez |, ...
,and Cortes JM, Sci Rep, 2015; Alonso-Montes C, ..., and Cortes JM, Front Psychol, 2015; Erramuzpe A, ..., and
Cortes JM, J Neural Eng, 2015; Erramuzpe A, ..., and Cortes JM, F1000 Res, 2015 ; Diez |, ..., and Cortes JM, Brain
Conn, 2015; Maki-Marttunen'V, ..., Cortes JM, ..., and Chialvo DR, Front Neuroinf, 2013



FUNCTIONAL CONNECTIVITY

Similarity between time series of different regions (also distant ones)
Symmetric (in general)

Highly dynamical (unlike SC)

Positive and negative values

Measures providing FC:

v Pearson Correlation
v’ Partial Correlation

v" Mutual Information
v' Coherence

v Phase synchronization

Blood Oxygen Level Dependent Signal

time

Bonifaxi.... et al Cortes, Human Brain Mapping 2018; Diez... and Cortes, Network Neuroscience 2017; Diez |, ...
,and Cortes JM, Sci Rep, 2015; Alonso-Montes C, ..., and Cortes JM, Front Psychol, 2015; Erramuzpe A, ..., and
Cortes JM, J Neural Eng, 2015; Erramuzpe A, ..., and Cortes JM, F1000 Res, 2015 ; Diez |, ..., and Cortes JM, Brain
Conn, 2015; Maki-Marttunen'V, ..., Cortes JM, ..., and Chialvo DR, Front Neuroinf, 2013



Triple
Acquisition

fMRI Sequence TR:2.2
(raw EPI) Slices: 30
Volumes:200
8 min Flip Angle: 902

DTI Sequence
(raw EPI)

18 min (32 gradients)



Apply
parcellation
Remove first volumes Brain extraction -Compute transformatio
Motion correction Smoothing between structural
fMRI Slice-time correction Intensity normalization and functional space
sequence Band pass filter -Regress out of WM,

Detrend CSF, Global signal
and Head motion
-Transform fMRI to MNI space

Brain extraction
Segmentation

R Parcellations

High resolution

esolu Compute transformation
anatomical image

between structural and
MNI space

-Compute transformation
between FA and MNI space
1 -Project parcelation to FA
space

MNI
Template)

ty at the macroscale

vt

Eddy current Diffusion tensor
and motion reconstruction
correction ( FA, MD, RD, AD)

final output
| I

structural connectivity (SC) functional connectivity (FC)

Fiber tracking
( FACT)

DTI

]
(S
v
c
o
8

-

24

=

Undirected graphs
(Correlation,

| Partial correlation,

3 Mutual information, etc)

Fibers number
Fibers length
Axial diffusivity
Fractional anysotropy
Mean diffusivity
Radial diffusivity

Longitudinal
correspondence
between SC and FC
across different time
points

Cortes Lab

Directed graphs
¥ (Granger causality,
3 Transfer entropy, etc)
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ONITRC

@The source for neuroinformatics tools & resources SEARCH | Search within this

@ Neuroimaging data repository
@Cloud computing environment

NITRC Wins 2015 HHS Innovates Award
Check it out!
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Surveys

Tasks
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Brain Hierarchical Atlas: A brain atlas where the
regions of interest are relevant for both structure
and function

This atlas results from a hierarchical clustering approach applied to a
combination of functional (resting fMRI) and structural (DTI) datasets.
The novelty of the atlas is based on the fact that ROls are functionally
coherent (i.e., the dynamics of voxels within regions have high
similarity) and at the same time they are structurally wired (the voxels
within regions are highly integrated by white-matter fibers).

This Project contains the following files:

-average_networks.mat: The population (N=12) functional and
structural matrices, each one with dimensions 2514x2514

-functional.zip/structural.zip: Zip files containing the
functional/structural atlas for all the stages in the hierarchical tree,
from M=1 to 2514 ROls

-test_crosmodularity.m: Code example on how to compute
crosmodularity. It needs crossmodularity.m and modularity_index.m



STRUCTURE
DTI (fibers)

FUNCTION
Resting fMRI (time series)




STRUCTURE FUNCTION
DTI (fibers) Resting fMRI (time series)
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REVIEW SUMMARY

Structural and Functional Brain
Networks: From Connections to
Cognition

Hae-Jeong Park'* and Karl Friston?

Background: The human brain presents a puzzling and challenging paradox: Despite a fixed anatomy,
characterized by its connectivity, its functional repertoire is vast, enabling action, perception, and
cognition. This contrasts with organs like the heart that have a dynamic anatomy but just one func-
tion. The resolution of this paradox may reside in the brain's network architecture, which organizes
local interactions to cope with diverse environmental demands—ensuring adaptability, robustness,
resilience to damage, efficient message passing, and diverse functionality from a fixed structure. This
review asks how recent advances in understanding brain networks elucidate the brain’s many-to-one
(degenerate) function-structure relationships. In other words, how does diverse function arise from an
apparently static neuronal architecture? We conclude that the emergence of dynamic functional con-
nectivity, from static structural connections, calls for formal (computational) approaches to neuronal
information processing that may resolve the dialectic between structure and function.

(Park and Friston, Science, 2013)



The conjecture of the brain at criticality

REVIEW ARTICLES | INSIGHT

PUBLISHED ONLINE: 1 OCTOBER 2010 | DOI:10.1038/NPHYS1803

Emergent complex neural dynamics

Dante R. Chialvo?*

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the
mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of
cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the
involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical
point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the
brain is naturally poised near criticality, as well as its implications for better understanding of the brain.

Chialvo D.R. and Bak P. (1999)

Bak P and Chialvo D.R. (2001)

Eguiluz V.M., Chialvo D.R., Cecchi G., Baliki M, and Apkarian AV. (2004)
Chialvo, D. R. (2004)

D. Fraiman, P. Balenzuela, J. Foss and D. R. Chialvo (2004)

D. R. Chialvo (2010)



Pioneer work by Sporns and
collaborators



Pairwise link-to-link comparison

A : Participant B, 998 ROls

0.5 ,
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s 3
r =0.48
03.2 0.4 0.6 0.8
SC

(Honey et al, PNAS, 2009)



Pairwise link-to-link comparison

After
Gaussianization

Only over
connected pairs A
Connected pairs
are only the 3%
of the pairs!!!!

0.5
Raw data on all
pairs give
correlations of

rsFC

0.1-0.2 Of . s

Indirect effects
make the SC-FC
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Participant B, 998 ROIs
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(Honey et al, PNAS, 2009)



Our approach, inspired in this piooner
work, makes use of clustering or
modularity to search for similarities



SUBJECT 1

Structural connectivity (SC) Functional connectivity (FC)

DTl — number of fibers Rs-fMRI — Pearson correlation
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SUBJECT 1
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Brain modularity:
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SUBJECT 1

R

Brain modularity:
segregation and integration

',‘qu
™

[T TS TRPEL
R B
(R

500

e

YA E
L ¥
M AT
NN
L2

provides a tree of modules '

@)
Z
o E»_‘?{
Q |
E £
D |
»
~

).4
0.95 ) ).6

0.9

modules

0.85

Distance between

L

1234567 89101/121314151617181¢ 20

(Tononi, et al., PNAS, 2009)



Modules




SUBJECT 1




SUBJECT 1




rs-fMRI
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ZOOM IN
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Optimal in what sense ?

Cross-modularity sense

v



Modularity index Q
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Similarity between modules (Sorensen index)
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Similarity between modules (Sorensen index)

a

Mean similarity L
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What means high crossmodularity?



Optimal partition with M=20 regions

v



Optimal partition with M=20 regions




Optimal partition with M=20 regions

Some are made of anatomically
distinct components




Optimal partition with M=20 regions

Some are made of anatomically
distinct components

e

' ﬁ >»

Each individual region is structurally
wired and functionally similar




Brain Hierarchical Atlas: https://www.nitrc.org/projects/biocr_hcatlas/

Subnetwork 1 Subnetwork 2 Subnetwork 3 Subnetwork 4 Subetwork 5

Subnetwork 6
. ' resting fMRI

Distance 1

Subnetwork 8
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HEALTHY (NON-PATHOLOGICAL) BRAIN AGE ?




HUMAN BRAIN MAPPING 2018
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Structure-function multi-scale connectomics reveals a major
role of the fronto-striato-thalamic circuit in brain aging
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MOTIVATION:

Q1: Can we use brain connectivity to measure brain maturation?

v



MOTIVATION:

Q1: Can we use brain connectivity to measure brain maturation?

Two different concepts: Brain Connectome Age (BCA) vs Chronological
Age (CHA)
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MOTIVATION:

Q1: Can we use brain connectivity to measure brain maturation?

Two different concepts: Brain Connectome Age (BCA) vs Chronological
Age (CHA)

If the two are different; which is bigger?

http:// www.jesuscortes.info u@ _jesusmcortes



MOTIVATION:

Q1: Can we use brain connectivity to measure brain maturation?

Two different concepts: Brain Connectome Age (BCA) vs Chronological
Age (CHA)

If the two are different; which is bigger?

For old people, if BCA < CHA is good

For young people, if BCA < CHA might indicate neurodevelopmental
problems



MOTIVATION:

Q2: Can we alter, e.g. rejuvenate, BCA by a treatment or therapy ? For
instance, by increasing the level of physical activity, using a drug or a
rehab program




MOTIVATION:

Q3: What are the brain areas whose connectivity predicts age?

The circuit correlates of brain aging




MOTIVATION:

Q1: Can we use brain connectivity to measure brain maturation?

First time on 1973, Reitan introduced the Brain-Age Quotient as a

measure for age-related cognitive functioning... However, this was not
continued that much

Brain age using morphological features have been assessed before by
Cole & Franke and collaborators (Cole et al 2015,2017a, 2017b, 2017c)



MOTIVATION:

72 yo

17 yo

No morphological features were used to predict age



MOTIVATION:

Omitofrontal callosum | Left cingulum cingulate

A A A A A A A ' 3 A A A A ' 3 A A

8 18283848586878 8 182838485868 78 8 182838485868 78 B 182838 48586878 B8 1828 3848586878 B 1828 38 48 58 68 78
Age Age Age Age Age Age

(Yeatman & Mezer, 2014)



METHODS (I)



Brain Hierarchical Atlas
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METHODS (I1)

N=155 subjects
Age ranging between 10 and 80 years (mean =44, SD = 22)
Triple acquisitions 3T MRI (T1, 64 directions DTl and rs-fMRI)

4 * (142+3+...+M) = 2 [M * (M+1)] different initial features
(FIC, FEC, SIC, SEC times dendrogram level)

Correlo-dendrogram as a bi-variate Feature selection: Values such that the correlation
between CHA and FEC*SEC or FIC*SIC are significant, i.e., pe = sqrt (pPrec * Psec) , P = sart (peic
* psic) , which define a structure-function connectivity feature.

Bonferroni correction : For each new dendrogram level M, only two modules are new
with respect to the M-1 level, eg. starting at M=20 and finishing at M=1000,
p threshold = 0.05 / [20 + (1000-20)* 2]



METHODS (Il1)

K-1
t, = wo + Z wj X' + €, Estimated age for participant n, x. structure-function connectivity feature
j=1
1 P K-1 2
E(w) = fz tn — W — Z w; %' Error for P different subjects
n=1 j=1

1.1 1
Txyxg oo Xy

242 ,,, 42
wMLE = (pTp) Tt with design matrix defined as = L, : k-1

PP ... P
Ty xy o Xy

N2
1
MAE(K) =~ |ChA, = BCAL(K)| with N, = 115 (75%) for training and N,=38 (25%) for testing
2
n=1

BCA,(K) = o' + Z w}™E x  Brain connectome age depends on K



CDG

|

Q MULTI-SCALE FEATURES WITH
SIGNIFICANT CORRELATION WITH AGE
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RESULTS



Multi-scale maximum age correlation

Internal connectivity

External connectivity




Chronological age (ChA, years)

120
100 o e o
80

60
40
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corr = 0.95
p < 2E-20

0O 20 40 60 80 100
Brain-connectome age (BCA, years)



The connectivity descriptors predicting aging the most:
The fronto-striato-thalamic (FST) circuit

7 Thalamus

Basal Ganglia
Middle frontal gyrus

Inferior frontal gyrus

Orbitofrontal cortex



FST circuit
350 o c=-0.72 (p = 8E-26)

300+
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External structural connectivity
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Chronological age



DISCUSSION

BCA, ie., a multi-scale structure-function estimation of CHA, can work as good as other
brain age estimators using morphological descriptors
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brain age estimators using morphological descriptors

Our approach based on BCA reveals that the circuit participating the most in age
prediction is FST, in contrast to previous literature majorly reporting the role of the
hippocampus circuit. Therefore, we suggest that when studying healthy aging, FST should
be taken in consideration; When studying pathological aging, hippocampus circuit has
been shown the gold standard in both human and animal studies
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The FST mediates motor skills, cognitive control and executive function, but also regulates
dopamine (reward, motivation) and serotonin (mood, emotion) release



DISCUSSION

BCA, ie., a multi-scale structure-function estimation of CHA, can work as good as other
brain age estimators using morphological descriptors

Our approach based on BCA reveals that the circuit participating the most in age
prediction is FST, in contrast to previous literature majorly reporting the role of the
hippocampus circuit. Therefore, we suggest that when studying healthy aging, FST should
be taken in consideration; When studying pathological aging, hippocampus circuit has
been shown the gold standard in both human and animal studies

The FST mediates motor skills, cognitive control and executive function, but also regulates
dopamine (reward, motivation) and serotonin (mood, emotion) release

The discrepancy between the CHA and BCA might work as a biomarker for quantifying
deterioration as a result of disease or improvement after some treatment or therapy,
which has unlimited applications



age estimation error

FUTURE WORK:

The effect of physical activity in brain age
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