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Focus of the century: Understanding the brain

• Human brain project:  
Aims at accomplishing the goal by re-building  
the brain physiology (reminds me of Chomsky’s critique  
regarding understanding the nature of language!) 
 

!
Old results that made us look for an  alternative approach… 

!
!

   Starting 1996 @ ini UZH/ETHZ: Experiments on rat somatosensory neurons 
 
 

!
 
         ‘NEURONS ARE (JUST) OSCILLATORS’ (E. Moses, Madrid 2018) 

!
!
!
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Experiments (1996/7, K. Schindler, L. Bunimovich)

Neocortical networks of pyramidal neurons 1517

Figure 1. (a) Experimental spike-train—the membrane potential as a function of time (inhibitory
perturbation). Quantities T0, T , t1, t2, Ts allow an evaluation of the phase return map f!. Due to
inhibitory synaptic perturbation (manifested in the two negative pulses), the regular interspike time
T0 is changed into the variable length T . Interpolating functions g(φ) (full curves) to measured
data from a characteristic neuron subject to the experiment of (a). (b) Inhibitory, (c) excitatory
perturbation responses. Inhibitory perturbations at early phases yield an excitatory effect. (d)
Membrane voltage of experimental stationary continued perturbation. From above, locking to
periods p = 4 (I), p = 3 (II), p = 2 (III), p = 1 (IV) is shown. Note the immediate relaxation
onto the locked states. (e) Two results from uniform sweeping. Top rows, spike-trains; middle
rows, experimentally measured phase returns; bottom rows, results from a corresponding sweeping
of the model map. First run, labelled by ‘f’: periodicities p = 2, 3, 4 (followed by an unsettled
high period and p = 1, not shown). ! ∈ [0.8, 0.9] (K ∼ 0.85), Second run, labelled by ‘s’:
periodicities p = 1, 5, 4 (followed by p = 3 and later by p = 2, not shown). ! ∈ [0.65, 0.70]
(K ∼ 1.05).

period of perturbation (‘continued perturbation’), instantaneous locking into periodic firing
emerges, as shown in figure 1(d). As the frequency of perturbation is allowed to change, several
bifurcations are observed that lead the system from one periodicity into another, see figure 1(e).
Topologically identical bifurcation structures are obtained at moderately changed perturbation
strengths. However, at increased perturbation strengths, shrinking basins of attraction make
the observation of high-order lockings increasingly difficult. As a consequence, at high
perturbation strengths we mostly find period 1, period 2 and high periodicity whose period
cannot be determined, or chaotic behaviour that will be shown to emerge at high perturbation
strengths.
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Figure 1. Continued.

3. Continued perturbations

To explain the firing behaviour of the regularly perturbed, otherwise regularly firing neuron,
the nonlinear dynamics approach originally put forward by Glass and Mackey is appropriate
(Glass et al 1984, Glass and Mackey 1988). This approach is directly based on the measured
phase response function g(φ). According to figure 1(a), for two successive perturbations we
have

T + t2 = t1 + Ts (1)

where Ts is the perturbation period (i.e. the time between successive perturbations), T = T (φ)

is the perturbed cycle length, t1 is the time after spiking at which the perturbation was applied,
and t2 is the time after spiking at which the next perturbation will occur. To express this relation
in terms of phases relative to the unperturbed cycle duration T0, the equation is divided by T0.
This leads to the equation

φ2 = φ1 + " − g(φ1) mod(1) (2)
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Numerical explorations:
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overview on the response of the noise-driven neuron under asymmetric pair interaction, we
investigated the dependence of p on the stimulus type (inhibition/excitation) and the stimulus
strength. This will then provide a quantitative measure for the occurrence of the different
spiking patterns on the set of regularly perturbed, otherwise regularly spiking pyramidal
neurons.

4. Complex response: regularity, stability and bifurcations

Displaying sets of iteratively generated phases as a function of ! amounts to the generation of
bifurcation diagrams (e.g. Argyris et al 1995). In figures 2(a) and (b), the iteratively generated
phases {φi}i=1,...,M , where M is large, are plotted as dots in the vertical direction, for fixed
values of !. Although the generating maps and the diagrams look quite different for inhibition
and for excitation, both bifurcation diagrams are typical for the circle-map universality class
(Argyris et al 1995). This is shown in figures 2(c) and (d), where the periodicities p of the
generated set of phases are shown as a function of !, at fixed stimulation strength K . As
can be seen, identical ordering of the periodicities emerges. This so-called Farey ordering

Figure 2. Bifurcation diagrams, based on the phase response functions of figure 1. (a) Inhibitory,
(b) excitatory case (at K ∼ 0.4). (c), (d) Associated periodicities p showing locking on intervals
and Farey-tree ordering. K ∼ 0.85, as in the first run of figure 1(e); the range of the first sweeping
is indicated by the broken line. The succession of periods 2, 3, 4 is correctly predicted, where
the response is restricted to the most stable (i.e. lowest) periodicities. This and individual neuron
response may explain the somewhat delayed appearance of period 2.
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Figure 2. Continued.

(cf Argyris et al 1995), is indicative of limit-cycle coupling and ensures the existence of all
possible periodicities p ∈ N , where N denotes the set of positive integers.

The small individual variation of the responses of neurons at comparable perturbation
strength, together with circle-map universality (see below), made us aim at a generic response
characterization of pyramidal neurons. For a large number of cells we determined the
perturbation response for different strengths of the perturbation. We found that the responses
were most consistent with the parametrization

g!,K(φ) = (g!,Ko(φ) − 1)K + 1 (4)

where the reference curve g!,Ko was chosen at 75% of the maximal obtained perturbation
of the curve. The form of the parametrization takes care of the fact that, up to the maximal
perturbation, the effect on the phase response function is proportional to the applied physical
stimulation strength. Note that this parametrization allows us to extrapolate the perturbation
response beyond the biologically accessible range of [0, 1.3].

For the following we therefore used the cell responses shown in figures 1(b) and (c) in
conjunction with equation (4) in a paradigmatic way. Investigation of the returned periodicities
as a function of {!, K} results in typical Arnold-tongue structures (Argyris et al 1995). For
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Comparison experiment-simulation:1522 R Stoop et al

Figure 3. Overview on the response of regularly synaptically perturbed, regular spiking pyramidal
neurons. Stability (in terms of Lyapunov exponents λ) and periodicity p, upper panels. A more
detailed view of the periodicity is given in the lower panels, where the periodicites of the lowest,
most stable Arnold tongues are indicated by numbers. (a) Inhibition, (b) excitation. Results are
based on a prototypical response (see figure 1) and equation (4), which allows the extension beyond
the biologically accessible range of [0, 1.3]. For inhibition, chaos is possible above K ∼ 0.95,
this value depending slightly on the specific form of the map. Chaos is prevalent in the boxed top
peak region of the triangle. Correspondence with the experimental sweepings again is made by
inclusion of their traces (horizontal lines: f, first run; s, second run). For excitation, chaos cannot
be reached by realistic values of K . (c) High-resolution calculation of Lyapunov exponents at
K ∼ 1.25, showing the occurrence of chaos for inhibition (upper plot) and the absence of chaos
for excitation (lower plot).

each periodicity p, there are different Arnold tongues which comprise areas of the {", K}-
parameter space having stable solutions of the same periodicity p. In fact, the Arnold tongues
are simply the extension of the Farey-tree structures of figures 2(c) and (d) from the "- to the
{", K}-space. For the different tongues and as a function of the perturbation strength K , the
stability properties of the solutions are of interest. The Lyapunov exponent

λ" = lim
n→∞

1
n

log |(f (n)
" )′(x0)| (5)
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Figure 1. Continued.

where ! = Ts/T0 is the phase shift between the periodic limit cycle and the periodic
perturbation and g(φ) = T (φ)

T0
, in accordance with the definition given above. Equation (2)

can be seen as defining a map on the circle I := [0, 1] (Cornfeld et al 1982)

f!(φ1) = φ2 where φ1,φ2 ∈ I (3)

the phase return map. It is worth emphasizing that in order to derive the phase response
function, it is enough to consider single, isolated perturbations. Iteration of f! describes the
effect of continued perturbations, provided that the stability of the limit cycles is strong enough
to ensure return onto the limit cycle before the arrival of the next perturbation. That this is
indeed the case will be shown below. The set of phases P = {φi}i∈N that are iteratively
generated by f!, where N is the set of positive integers, enables us to distinguish regular
from irregular spiking. If the number p of elements of P is finite, regular spiking is observed,
where p is the periodicity of the spiking. However, p can also be infinite. To obtain an

f

s
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f
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Figure 3. Continued.

normalization of K , implies that chaos cannot be reached by excitation. This observation
is also corroborated by noticing that within the biologically meaningful parameter space
(perturbations of non-damaging strengths), excitatory stimulation always yields invertible
phase return functions. As non-invertibility is a necessary condition for chaotic response,
it follows that chaos cannot be generated from an excitatory monodirectional pair interaction
(nor, by the same reasoning, can integrate-and-fire models, even when refractory periods are
included (cf Bernasconi et al 1999)). As a numeric corroboration, we show the dependence
of the Lyapunov exponent on ! around the maximally obtainable perturbation strength in
figure 3(c).

5. Comparison between measurement and theory

For the demonstration of the validity of our theoretical description for the interaction between
two regularly firing pyramidal neurons we rely on three experimental facts.

(a) We have verified that the limit cycle property is stable enough to allow an analysis
of continued perturbations by iterated maps. Experimental evidence of continued
stimulation, as shown in figure 1(d), proves that this is indeed the case.

(b) After locating the experimental parameters in the {K,!} parameter space, we observed
that the experimentally obtained periodic structures of figure 1(d) matched very well with
the predictions by the Arnold tongues. Deviations from our paradigmatic description due
to individual neuron variation are possible and may lead to (usually small) distortions

More recent generalizations: 
S. Martignoli 
K. Kanders
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Interacting neuron pairs (1998):
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1-d chain of diffusively coupled  
(binary) interaction maps:

!"#$%& #' ("" )*"#*"+ %# ,$- .+'/" 0("10& 1'+ #*" !"(%2- '1
,'3.0#$#%'-$&&4 3'+" .')"+10& *$+!5 $-! ('1#)$+"6

!"#$%&'()*(+($,-. 7*%( )'+8 )$( (0..'+#"! 94 #*" :;:< $-!
=*'-$8 >? @A7B5,'-#+$,#C6 7*" $0#*'+( $,8-')&"!2" !%(,0((%'-(
)%#* D6E6 F'02&$( $-! G6?6 :%-$%6

!"#"$"%&"'

>9"&"( H @IJKLC M',$& ,'+#%,$& ,%+,0%#(6 :.+%-2"+N O"+&%- P"%!"&9"+2
;") G'+8

>+24+%( EN <$0(# ?N P$$(" H @IJJQC RS.&'+$#%'- '1 ,*$'(6 ;'+#*5
P'&&$-!N >3(#"+!$3

>(* DO @IJTUC B-1'+3$#%'- #*"'+46 F'/"+N M'-!'-
O$"("-( VN ?0,8"-*"%3"+ EN A%3 :N H$,A$4 D: @IJJIC 7*+""

,'0.&"! '(,%&&$#'+(W 3'!"5&',8%-2N 2&'9$& 9%10+,$#%'-( $-! #'5
+'%!$& ,*$'(6 =*4(%,$ F QJW XKYZQYU

O0-%3'/%,* M>N :%-$% G? @IJKKC :.$,"5#%3" ,*$'( %- ,'0.&"! 3$.
&$##%,"(6 ;'-&%-"$+%#4 IW QJIZUIT

V*%&&"3% :N O$+9% H @"!(C @IJJJC V*$'( $-! -'%(" %- 9%'&'246
['+&! :,%"-#%\,N :%-2$.'+"

V'+-1"&! R=N <'3%- :]N :%-$% G? @IJKLC R+2'!%, #*"'+46 :.+%-2"+N
O"+&%- P"%!"&9"+2 ;") G'+8

<"&&"+ [ @IJYIC >- %-#+'!0,#%'- #' .+'9$9%&%#4 #*"'+4 $-! %#( $.5
.&%,$#%'-(N /'& L6 [%&"4N ;") G'+8

?&$(( MN H$,8"4 H @IJKKC <+'3 ,&',8( #' ,*$'(6 =+%-,"#'- ^-%5
/"+(%#4 =+"((W =+%-,"#'-N ;6E6

?&$(( MN ?0"/$+$ HN O"&$%+ EN :*+%"+ > @IJKQC ?&'9$& 9%10+,$#%'-(
'1 $ ."+%'!%,$&&4 1'+,"! 9%'&'2%,$& '(,%&&$#'+6 =*4( D"/ > LJW
IXQKZIXUY

?+"9'2% VN _## RN G'+8" E> @IJKKC ^-(#$9&" ."+%'!%, '+9%#( $-!
#*" !%3"-(%'-( '1 30&#%1+$,#$& ,*$'#%, $##+$,#'+(6 =*4( D"/ >
XYW IYIIZIYIU

P"99 F @IJQJC 7*" '+2$-%`$#%'- '1 9"*$/%'+6 [%&"4N ;") G'+8
P%-"( H @IJKJC > .+'2+$3 1'+ (%30&$#%'- '1 -"+/" "a0$#%'-( )%#*

9+$-,*%-2 2"'3"#+%"(6 B-# E O%'3"! V'3.0# LQW UUZTK

P%-"( H @IJJQC 7*" -"0+'- (%30&$#%'- .+'2+$36 B-W :8+`4."8 E
@"!C ;"0+$& -"#)'+8 (%30&$#%'- "-/%+'-3"-#(6 A&0)"+N >35
(#"+!$3N .. IQYZITX

P0b3$- F> @IJULC > 3"#*'! 1'+ #*" ,'-(#+0,#%'- '1 3%-%3035
+"!0-!$-,4 ,'!"(6 =+', BDR QcW IcKJZIIcI

A',* V @IJJJC O%'.*4(%,( '1 ,'3.0#$#%'-6 _S1'+! ^-%/"+(%#4
=+"((N _S1'+!

M'(('- EN H$,8"4 H @IJJQC V'0.&%-25%-!0,"! (#$#%(#%,$& ,4,&%-2 %-
#)' !%b0(%/"&4 ,'0.&"! 3$.(6 =*4( D"/ R UcW KQXZKUT

_## RN ?+"9'2% VN G'+8" E> @IJJcC V'-#+'&&%-2 ,*$'(6 =*4( D"/
M"## TQW IIJTZIIJJ

="%-8" EN =$+%(% EN D'"((&"+ _RN :#''. D @IJJLC R-,'0-#"+ )%#*
,*$'(6 :.+%-2"+N O"+&%- P"%!"&9"+2 ;") G'+8

D"4"( >FN <"#` RR @IJJXC 7)' 3'!"( '1 %-#"+(.%8" %-#"+/$&
(*'+#"-%-2 94 9+%"1 #+$-(%"-# !".'&$#%`$#%'-( %- ,$# -"','+#%,$&
-"0+'-(6 E ;"0+'.*4(%'& TJW ITTIZITYL

:,*%-!&"+ AN O"+-$(,'-% VN :#''. DN ?''!3$- =N F'02&$( DE
@IJJYC V*$'#%, (.%8" .$##"+-( "/'8"! 94 ."+%'!%, %-*%9%#%'- '1
+$# ,'+#%,$& -"0+'-(6 d ;$#0+1'+(,* UL$W UcJZUIL

:%-2"+ [ @IJJQC =0#$#%/" 10-,#%'-( '1 #"3.'+$& ,'++"&$#%'-( %-
-"','+#%,$& .+',"((%-26 B-W A',* VN F$/%( E @"!(C M$+2"5(,$&"
-"0+'-$& #*"'+%"( '1 #*" 9+$%-6 HB7 =+"((eO+$!1'+! O''8(N
V$39+%!2"N H$((6N .. LcIZLXY

:#''. DN :#""9 [5P @IJJYC V*$'#%, 1$3%&4 )%#* (3''#* M4$.0-'/
!"."-!"-,"6 =*4( D"/ R UUW YYTXZYYTT

:#''. DN :,*%-!&"+ AN O0-%3'/%,* M> @IJJJC B-*%9%#'+4 ,'--",5
#%'-( "-*$-," .$##"+- +",0++"-," %- -"#)'+8( '1 -"','+#%,$&
.4+$3%!$& ,"&&(6 =*4( M"## > LUKW IIUZILL

:#''. DN :,*%-!&"+ AN O0-%3'/%,* M> @Lccc$C [*"- .4+$3%!$&
-"0+'-( &',8N )*"- #*"4 +"(.'-! ,*$'#%,$&&4N $-! )*"- #*"4
&%8" #' (4-,*+'-%`"6 ;"0+'(,% D"( XTW KIZJI

:#''. DN :,*%-!&"+ AN O0-%3'/%,* M> @Lccc9C ;'%("5!+%/"- -"'5
,'+#%,$& %-#"+$,#%'-W ,'3.&"S -"0+'- (.%8%-2 0-,'/"+"! 94
-'-&%-"$+ !4-$3%,(6 >,#$ O%'#*"'+ QKW IQJZIYI

]'- !"+ H$&(90+2 V @IJJQC 7*" ,'++"&$#%'- #*"'+4 '1 9+$%- 10-,5
#%'-6 B-W F'3$-4 RN /$- P"33"- EN :,*0&#"- A @"!(C H'!"&(
'1 -"0+$& -"#)'+8( BB6 :.+%-2"+N O"+&%- P"%!"&9"+2 ;") G'+8N
.. JUZIIJ

QKJ

mailto:stoopn@ethz.ch


Ruedi Stoop / Institute of Neuroinformatics / ruedi@ini.phys.ethz.ch

!"#$%&#'(#&) $%& *+#$ (, $%& *+#+'&$&# -*+.& (/ 0%1.%
$%& '+*- 0("23 /&&3 $( 30&22 1- #+$%&# -'+22 4+2$%("5% (,
/(/6&#( '&+-"#&78 9%&#&,(#&) +331$1(/+2 :/& $"/1/5 4&858
;< $%+2+'1. ==.(/$#(2>> .1#."1$-7 '+< ;& /&.&--+#< ,(#
*"$$1/5 + 2+#5& /"';&# (, 1/%1;1$(#< .(//&.$1(/- 1/$(
-</.%#(/161/5 0(#?1/5 .(/31$1(/-8 9%& 2+$$&# .(/31$1(/-
%+@& ;&&/ *(-$"2+$&3 +- /&.&--+#< ,(# $%& *&#,(#'+/.& (,
*&#.&*$1(/ $+-?- 4A1/5&# BCCDE F(/ 3&# G+2-;"#5 BCCD78

! "#$%&'()*+(*,&+(& -&$.+*+/

H- +/ +2$&#/+$1@& $( .(/$#(2 '&.%+/1-'-) 0& $&-$&3
!"#$%&'()*')+%*'%&,#$%+ -%,,)#* .%#/*)*0 -.%&'&-

I0%1.% '(31,< $%& .(//&.$1(/ -$#&/5$%- ;&$0&&/ $%&
2+$$1.& -1$&- 4J&;; BCDCE H;&2&- BCKLE M(.% BCCC7N8 9(
&O*2(#& $%1- *(--1;121$<) 0& "-& + %<*&#;(21. $+/5&/$
,"/.$1(/ $( 31-.#1'1/+$& ;&$0&&/ *%+-&P.(1/.13&/$
/&15%;(#1/5 -1$& '+*- 40%(-& .(//&.$1(/ -$#&/5$%- 0122
;& &/%+/.&37 +/3 ("$P(,P*%+-& /&15%;(#1/5 -1$& '+*-
40%(-& .(//&.$1(/ -$#&/5$%- 0122 ;& #&3".&378 9%&
"*3+$& #"2& ,(# $%& .(//&.$1(/ -$#&/5$%- 1-

!!"! #"#$%$B% !& !!"! #"#$%%#9+/%'&( $ B%"L ! #Q%

0%&#& / 1- $%& -"' (, $%& +;-(2"$& 1/@&#-& 31R&#&/.&- !!
;&$0&&/ $%& *%+-& +$ $%& 2+$$1.& *(1/$ +5+1/-$ $%& *%+-&-
(, 1$- /&15%;(#-8 H ;1(*%<-1.+22< #&+-(/+;2& ."$(R 4&858
!! # S$SB $( !! & S$SB7 *#&@&/$- 31@&#5&/$ 1/T"&/.& (,
/&+#2< &U"+22< *%+-&3 /&15%;(#-8 9%& 1''&31+$& &R&.$
(, $%& "*3+$& #"2& 1- $( -"**#&-- $%& .(//&.$1(/ 1 (/2< +$
-$#(/52< ("$P(,P*%+-& -1$&-8 !(# $%& 2+#5& '+V(#1$< (,
-1$&- 01$% 1/P*%+-& .(//&.$1(/-) $%& #"2& 1- 01$%("$ +
/($1.&+;2& &R&.$8 9%& 1/@(2@&3 4-'+227 3&.#&+-& (, $%&
$($+2 -"' (, .(//&.$1(/ -$#&/5$%- .+/ ;& .('*&/-+$&3
;< + .(##&-*(/31/5 ,+.$(#) (# $%& 3&.#&+-& .+/ ;&
1/$&#*#&$&3 +- +/ +3+*$+$1(/ &R&.$ $%+$ 1- ;+2+/.&3 0%&/
$%& 1/*"$ *+$$&#/ 1- .%+/5&3 4-&& ;&2(078 9%& ;1(2(51.+2
13&+ ;&%1/3 $%1- 1'*2&'&/$+$1(/ 1- $%+$ /&$0(#? &2&P
'&/$- $+?1/5 *+#$ 1/ + -*&.1:. *&#.&*$1(/ $+-? 0122 ;&
-</.%#(/16&3) 0%&#&+- $%& #&'+1/1/5 &2&'&/$- 0122 ;&
31-.(//&.$&3 ,#(' $%1- *#(.&--8 W/3&# $%1- J&;;1+/
*%+-&P.(1/.13&/.& 2&+#/1/5) $%& .(//&.$1(/ -$#&/5$%-
!!"! #" .(/@&#5& 01$%1/ + ,&0 4XBS7 1$&#+$1(/- $( 4,(#
*#+.$1.+2 *"#*(-&-7 :O&3 @+2"&-8 9( 1/@&-$15+$& $%&
*+$$&#/ 31-.#1'1/+$1(/ *#(*&#$1&- (, $%1- /&$0(#?) 0&
.%(-& (/& %(#16(/$+2 2+<&# (, + $0(P31'&/-1(/+2 /&$P
0(#? $( ;& $%& 1/*"$ 2+<&#8 Y/ $%1- 2+<&#) 0& 1'*2&P
'&/$&3 31-$1/.$ *%+-& *#(:2&-) $( '(3&2 31R&#&/$
-&/-(#< 1/*"$-8 H .('*+#1-(/ (, $%& &'&#51/5 /&$0(#?
*+$$&#/-) +- + ,"/.$1(/ (, $%& 1/*"$-) <1&23- $%& ,(22(01/5
#&-"2$-8 H- + ,"/.$1(/ (, $%& 1/*"$-) (/2< + -'+22 /"';&#
(, 2(.+216&3) 1/*"$P-*&.1:. '(+)*0 $)2%$ '(31,< $%&1#
*%+-&- 4-&& !158 K+78 9( (;$+1/ $%1- :5"#&) $%& *%+-&
31R&#&/.&- &@(?&3 ;< $0( 31-$1/.$ -&/-(#< 1/*"$- 0&#&
*2($$&3) "-1/5 .(2(# .(31/58 9%& 2+#5& #&3 -&+ #&*#&-&/$-
$%& *+#$ (, $%& /&$0(#? 0%&#& /( -15/1:.+/$ *%+-&
.%+/5&- +#& 1/3".&38 Z1$%1/ $%1- -&+) $%& .(31/5 -1$&-
&'&#5& +- -'+22 1-2+/3- 4/($& $%+$ $%& *%+-& 31R&#&/.&-
1/ $%& ;($$(' 2+<&# #&T&.$ $%& 31-$1/.$ 1/*"$ -15/+2- +/3
$%+$ $%& $(* 2+<&# 1- +R&.$&3 $%#("5% $%& .<.21. ;("/3+#<
.(/31$1(/-78 [/ $%1- 0+<) 1/*"$ 1/,(#'+$1(/ 1- 31#&.$2<
$#+/-,&##&3 $( -*&.1+216&3 /&$0(#? -1$&-) ,#(' 0%&#& 1$
'+< ;& #&+3 (R +/3 *#(.&--&38 !#(' $%& -1'"2+$1(/-)
$0( #&'+#?+;2& *#(*&#$1&- &'&#5&8 A1'12+# 1/*"$ *+$P
$&#/- 5&/&#+$& -1'12+# .(31/5P-1$& *+$$&#/- 4U"1$& 1/ $%&
-&/-& (, + '&$#1.7) +/3 .(31/5P-1$& +.$1@1$1&- 5&/&#+22< +#&
(, + *&#1(31. /+$"#&8 9%& 2+$$&# *#(*&#$< 1- 3&'(/-$#+$&3
1/ !158 K;) 0%&#& 1/*"$- ,#(' $%#&& *+$$&#/- +#&
.('*+#&38 !15"#& K. -%(0- %(0 2+#5& &O.1$+$(#< #&,#+.P
$(#< *&#1(3- -$#(/52< &/%+/.& -</.%#(/16+$1(/8 [/
.(/$#+-$) -$#(/5 2(.+2 1/%1;1$(#< .1#."1$- &/%+/.& $%&
,(#'+$1(/ (, 1-(2+$&3 .(31/5 -1$&-) 0%(-& *#&,&##&3
2(.+$1(/ -&&'- $( ;& +$ ;("/3+#1&- ;&$0&&/ 1/%1;1$(#<
+/3 &O.1$+$(#< 1/$&#+.$1(/-8

0*/1 21 $ \&$0(#? ]<+*"/(@ &O*(/&/$ "/ 3&-.#1;1/5 -$+;121$< (,
*+$$&#/- (, + /&$0(#? (, .("*2&3 $&/$ '+*-) +- + ,"/.$1(/ (, $%&
413&/$1.+27 -1$& '+*- -2(*&- # +/3 .("*21/5 1L8 ^(/$("# 21/&- (,
31-$+/.& S8L_ +#& 3#+0/ +#$"%+ 0%&#& -$+;2& /&$0(#? *+$$&#/- &@(2@&
4"/ X S7) -$+#$1/5 01$% "/ ` !B 42&,$'(-$ ."#@&78 3 G+O1'+2 -1$&P
]<+*"/(@ &O*(/&/$ "'+O (, + /&$0(#? (, 2(.?&3 1/%1;1$(#< -1$& '+*-)
+- + ,"/.$1(/ (, $%& .("*21/5 1L8 !(# $%& /&$0(#?) $%& 2(.+2 &O.1$+;121$<
1- 3 ` S8_ ,(# +22 -1$&- +/3 ! 1- ,#(' $%& 1/$&#@+2 IS8K) S8K_N8 9%&
;&%+@1(# (, $%1- /&$0(#? .2(-&2< ,(22(0- $%& ;&%+@1(# *#&31.$&3 ;< $%&
$&/$P'+* '(3&2

DKa

1-d chain of diffusively coupled  
(binary) tent-map (slope a) interaction maps:
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;& &/%+/.&37 +/3 ("$P(,P*%+-& /&15%;(#1/5 -1$& '+*-
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Phase-coincidence learning 
(binary) tent-map (slope a) interaction maps
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'(<#.#&1 2-:#41 5#+16.#$7 H2..#$32&'(&)/,B 1"# $#1 25
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2-0(26$ 1"+1 1"# 3.232$#' #&42'(&) (& 1#.*$ 25 3#.(8
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A[[ (r=sum of absolute inverse phase differences)

Interacting neuron pairs (1998, RS,LAB, WHS):
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We study to what extent cortical columns with their particular wiring boost neural computation. Upon

a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs

of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely

irrespective of their inner organization, enhances the speed of information transfer and minimizes the total

wiring length required to bind distributed columnar computations towards spatiotemporally coherent

results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in

networks with efficiency properties beyond those by scale-free networks.

DOI: 10.1103/PhysRevLett.110.108105 PACS numbers: 87.19.L!, 05.65.+b, 89.75.Da, 89.75.Fb

Towards the turn of the 19th century, J. P. Müller, E. du
Bois-Reymond, and H. von Helmholtz [1] discovered
that neurons are electrically excitable and this predictably
affects the electrical state of connected neurons. Shortly
after, Golgi and Ramón y Cajal provided their description
of neuronal and cortical architectures, revealing in the
case of the human neocortex striking columnar structures
divided into six layers. Ever since it has remained an open
question to what extent neuronal physics and cortical
architecture could account for the exquisite computational
abilities of the human brain, and how to derive from it
templates of efficient computation.

Recently [2], large-scale functional brain networks have
revealed a scale-free [3,4] link probability decay with
distance, of exponent ! ’ !2, whereas investigations on
cortico-cortical networks have only revealed a small-world
property [3,5]. Here, we complement these more global
descriptions by a study of local computational brain
networks, for which we find empirical indications and
computational arguments for a doubly fractal organization.
In such networks, the probability p of two lattice sites i, j
of distance di;j to be connected is

pi;j ¼ " # di;j!# þ ð1! "Þ # di;j!$;

where " 2 ð0; 1Þ weights between exponents # ’ 2 and
$ & 1. For these networks, we will demonstrate proper-
ties of computational efficacy beyond those of scale-free
networks.

Biological data.—Data collected by Roerig et al. [6]
evidence in our log-log adaption (Fig. 1) that the connec-
tion probability law valid within a (physiological) cortical
column [area (I) in Fig. 1], changes outside into a faster
decay law. Roerig et al. moreover note that ‘‘A small
fraction of inputs originated more than one mm away’’
[6]. These observations suggest a slow power or an
exponential probability of connection law decay within
the columnar scale (for avoiding discussions on a poorly

justified power law (too few data points), and to enable
direct comparison to similar works, e.g., Ref. [7], we will
work with an exponential decay), a fast power-law decay
for the interaction among whole columns (i.e., on inter-
columnar scales), and a slower decay for very long dis-
tances that prevent the probability from going to zero too
quickly. Motivated by an approximate self-similarity over
the microcolumn—column—hypercolumn scales, we will
assume that the exponent associated with the slow decay
will be close to the one that would be estimated from a
power law across the columnar distance. Our results do,
however, not critically depend on the exact values of the
exponents, only their relative ordering is of relevance.
We first take much care to show that, opposite to current
beliefs, inner-columnar wiring has little influence on com-
putational efficacy, so that whole columns can be taken as
fundamental elements for measuring the effects of connec-
tivity on computation and on speed of information trans-
port. We will show that for the interaction among columns,
wiring indeed is pivotal.
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FIG. 1 (color). Ferret striate cortex, adaptation from Ref. [6]:
Log-density of photostimulation—evoked excitatory (a) and
inhibitory (b) synaptic inputs (concentric rings 50 %m apart,
from 19 pooled layer 2=3 neurons). (I): Inner-columnar,
(II): Intercolumnar scale. Vertical lines: Extensions of aligned
physiological columns. Tilted dashed lines: Proposed long dis-
tance decay.
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Towards the turn of the 19th century, J. P. Müller, E. du
Bois-Reymond, and H. von Helmholtz [1] discovered
that neurons are electrically excitable and this predictably
affects the electrical state of connected neurons. Shortly
after, Golgi and Ramón y Cajal provided their description
of neuronal and cortical architectures, revealing in the
case of the human neocortex striking columnar structures
divided into six layers. Ever since it has remained an open
question to what extent neuronal physics and cortical
architecture could account for the exquisite computational
abilities of the human brain, and how to derive from it
templates of efficient computation.

Recently [2], large-scale functional brain networks have
revealed a scale-free [3,4] link probability decay with
distance, of exponent ! ’ !2, whereas investigations on
cortico-cortical networks have only revealed a small-world
property [3,5]. Here, we complement these more global
descriptions by a study of local computational brain
networks, for which we find empirical indications and
computational arguments for a doubly fractal organization.
In such networks, the probability p of two lattice sites i, j
of distance di;j to be connected is

pi;j ¼ " # di;j!# þ ð1! "Þ # di;j!$;

where " 2 ð0; 1Þ weights between exponents # ’ 2 and
$ & 1. For these networks, we will demonstrate proper-
ties of computational efficacy beyond those of scale-free
networks.

Biological data.—Data collected by Roerig et al. [6]
evidence in our log-log adaption (Fig. 1) that the connec-
tion probability law valid within a (physiological) cortical
column [area (I) in Fig. 1], changes outside into a faster
decay law. Roerig et al. moreover note that ‘‘A small
fraction of inputs originated more than one mm away’’
[6]. These observations suggest a slow power or an
exponential probability of connection law decay within
the columnar scale (for avoiding discussions on a poorly

justified power law (too few data points), and to enable
direct comparison to similar works, e.g., Ref. [7], we will
work with an exponential decay), a fast power-law decay
for the interaction among whole columns (i.e., on inter-
columnar scales), and a slower decay for very long dis-
tances that prevent the probability from going to zero too
quickly. Motivated by an approximate self-similarity over
the microcolumn—column—hypercolumn scales, we will
assume that the exponent associated with the slow decay
will be close to the one that would be estimated from a
power law across the columnar distance. Our results do,
however, not critically depend on the exact values of the
exponents, only their relative ordering is of relevance.
We first take much care to show that, opposite to current
beliefs, inner-columnar wiring has little influence on com-
putational efficacy, so that whole columns can be taken as
fundamental elements for measuring the effects of connec-
tivity on computation and on speed of information trans-
port. We will show that for the interaction among columns,
wiring indeed is pivotal.

1

10

100

1000

10 100 1000 104

IP
S

P
/m

m
2

-0.5

300

-1.5

1

10

100

1000

10 100 1000 104
E

P
S

P
/m

m
2

d [ m]

300

-0.75

-2

µ

(a) (b)

I III II

d [ m]µ

FIG. 1 (color). Ferret striate cortex, adaptation from Ref. [6]:
Log-density of photostimulation—evoked excitatory (a) and
inhibitory (b) synaptic inputs (concentric rings 50 %m apart,
from 19 pooled layer 2=3 neurons). (I): Inner-columnar,
(II): Intercolumnar scale. Vertical lines: Extensions of aligned
physiological columns. Tilted dashed lines: Proposed long dis-
tance decay.

PRL 110, 108105 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 MARCH 2013

0031-9007=13=110(10)=108105(5) 108105-1 ! 2013 American Physical Society

and " the coupling strength. The condition can generally
be achieved upon an increase in k. Although this criterion
may be too severe, it serves as a guideline for assessing a
second important measure of architectural efficiency: the
networks total wiring length (TWL) required by the kmin

connections. We find that doubly fractal networks syn-
chronize at shorter TWL while keeping a superior SIT
(Fig. 5, right).

Conclusions.—In the light of our results, the worse
performance of single fractal networks may be at the origin
of the increased complexity of (mainly) macroscopic bio-
logical neural networks [5]. We verified that doubly fractal
networks achieve their performance irrespective of
whether the long or short ranges are implemented by
neurons with long and short connections, or by neurons
with predominantly long connections and neurons with
predominantly short connections, and whether they are
organized in a columnar structure or not. From this per-
spective, the columnar structures may express a sufficient
(but not necessary) facilitating structure of a combined
SIT/TWL optimization. In fact, whereas most monkeys,
carnivores, and ungulates do have columns, rats and mice
don’t (discounting the dedicated barrel cortex). Mean path
lengths and clustering coefficients from our optimal net-
works are consistently close to those of the biological
examples (e.g., C. elegans). Their spectral densities reveal
a compromise between the random network’s semicircular,
and the classical preferred-attachment BA [19] scale-free
network’s triangular distribution with long tails, with a
slight distribution asymmetry indicating a character of its
own. Our excitatory-inhibitory power law decay exponents
of 2 and 1.5 are close to those obtained from a critical
avalanche model of cortical computation [20] for ava-
lanche time duration and avalanche size. The question
emerges whether there is a direct link between our
approach and these models [2,21,22]. Detailed numerical
experiments along our framework may reveal the nature of
this correspondence.
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Testing the ‘canonical microcircuit’ dogma

Computation within columns.—To show that inner-
columnar wiring has little effect on computation, we use
pattern recognition tasks by two models of the column,
and measure their computation in terms of the recognition
rate R. Insights into the structure of biological columns
(cf. Ref. [8]) motivate us to use as the network template
for columnar computation a three-dimensional grid of
3! 3! 15 ¼ 135 neuron sites. 135 is a typical number
of neurons in a column of the size indicated in Fig. 1. The
separation into 3! 3! 15 sites reflects the biological fact
that within a column the average neuronal distance is
dominated by a strong horizontal connectivity vs a large
vertical extension. Columnar models containing larger
numbers of neurons (used to corroborate obtained results)
were scaled correspondingly. Through all simulations, the
abundance of inhibitory neurons was kept at 20%. Taking
biological data as the basis, we measure the effect by the
biological wiring for two columnar models of distinct
detailedness [Fig. 2 (I), (II)]. In the simple excitatory-
inhibitory (EI) column model, the biological wiring is
reduced to excitatory (E) and inhibitory (I) neuronal
populations, and connectivity weights C for having a con-
nection between elements within or among these popula-
tions. The typical biological connectivity is reflected by
CðE;EÞ ¼ 0:3, CðE; IÞ ¼ 0:4, CðI; EÞ ¼ 0:2 and CðI; IÞ ¼
0:1 [Fig. 2 (I) (a), right]. The synaptic strengths are
obtained from drawing from a uniform distribution over
[0,1] and then multiplying by strength weights wðE; EÞ ¼
30, wðE; IÞ ¼ %19, wðI; EÞ ¼ 60 and wðI; IÞ ¼ %19. The
connectivity weights C and the strength weights w reflect
what is known about the average connectivity and synaptic
efficacy in biological columnar networks. Various spatial
distributions of the neurons on the grid can be imple-
mented, if the probability for a connection from neuron j
to neuron i on the grid is chosen according to pconði;jÞ¼
Cði;jÞexpð%d2i;j=!

2Þ, where di;j¼jx̂i%x̂jj is the Euclidean

distance between the ith and the jth neurons’ position on
the grid [Fig. 2 (I), (a), (b), left]. ! controls both the
number and the typical length of the connections, varying
from unconnectedness (! ¼ 0) over local next-neighbor
connectivity (! ¼ 1) to global connectivity (! ¼ 1).
This model is compared to a control network with the
same !, but a uniformly set C (for establishing an equiva-
lent amount of neural activity, C& 0:37, Fig. 2 (I) (b).
In the LEI network, additionally the biological layering is
taken into account. This is done by implementing three
layers f2=3; 4; 5=6g, each of them containing an excitatory
and an inhibitory population. The often used aggregation
of layers 2=3 and of layers 5=6 originates in the difficulty
to discern in physiological studies the precise layer mem-
bership of neurons. The recurrent connections within the
individual layers follow the connection probabilities and
strengths of Ref. [7]; as in the biological example input
mostly feeds into layer 4. Layer 2=3 is the hidden layer, the
output neurons are confined to layer 5=6 [Fig. 2 (II) (a)].
The biological example is compared to networks obtained
by replacing at each synapse with probability p 2 ½0; 1(
the pre- and postsynaptic neurons by neurons chosen from
the pooled neuronal ensembles of the same kind [excita-
tory or inhibitory, Fig. 2 (II) (b)]. This rewiring procedure
retains the overall connectivity and weight distribution
between the excitatory and inhibitory populations, but
gradually removes the three-layered structure.
Reservoir network pattern recognition.—If we want to

measure for a given columnar realization the recognition
rate R, we must be careful to not change its wiring by
the learning process. This is avoided by using reservoir
(or liquid state) neural networks (LSN), a paradigm that is
successfully used, e.g., in robot motion planning [9]. In
these networks, learning is confined to so-called read-out
neurons accessing the network’s periphery only. This allows
us to assess the pure effect of the inner-columnar wiring on
computation. We give a brief outline only, for details see our
SupplementalMaterial Sec. (1a) [10]. LSN associates k pairs
fuðtÞi; yðtÞigi2f1;...;kg of input/output sequences of individual
sequence length Ti (so that t 2 f1; . . . ; Tig; input vectors
u have dimensionality Nu, output vectors v have dimen-
sionality Ny). An input sequence uðtÞi stimulates directly,
via aweightmatrixWin, a reservoir ofNx neurons. Reservoir
neurons are connected by synapses. Synaptic output is
relayed according to the connectivity matrixW implement-
ing the wiring by means of a positive weight for excitatory, a
negative weight for inhibitory and a zero weight for missing
connections. Let xðtÞi denote the generated reservoir state
vector, let T ¼ P

Ti denote the total time spanned by the
input patterns, letX denote theNx ! T-matrix of states, and
let Y denote the Ny ! T matrix of the associated patterns.
The desired relation WoutxðtÞi ’ ydðtÞi leads directly to the
least-squares optimized readout matrix

W out ’ YXþ;

FIG. 2 (color). (I) (a) EImodel, (b) EI-control network (uniform
synaptic weights w, ! ¼ 2). pcon: probability of a synaptic con-
nection among neurons of distance d forC values as in the text,w:
synaptic strength of the connections. (II) (a) LEI-model, (b) LEI-
control network. Input strengths to populations are color coded.
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Computation within columns.—To show that inner-
columnar wiring has little effect on computation, we use
pattern recognition tasks by two models of the column,
and measure their computation in terms of the recognition
rate R. Insights into the structure of biological columns
(cf. Ref. [8]) motivate us to use as the network template
for columnar computation a three-dimensional grid of
3! 3! 15 ¼ 135 neuron sites. 135 is a typical number
of neurons in a column of the size indicated in Fig. 1. The
separation into 3! 3! 15 sites reflects the biological fact
that within a column the average neuronal distance is
dominated by a strong horizontal connectivity vs a large
vertical extension. Columnar models containing larger
numbers of neurons (used to corroborate obtained results)
were scaled correspondingly. Through all simulations, the
abundance of inhibitory neurons was kept at 20%. Taking
biological data as the basis, we measure the effect by the
biological wiring for two columnar models of distinct
detailedness [Fig. 2 (I), (II)]. In the simple excitatory-
inhibitory (EI) column model, the biological wiring is
reduced to excitatory (E) and inhibitory (I) neuronal
populations, and connectivity weights C for having a con-
nection between elements within or among these popula-
tions. The typical biological connectivity is reflected by
CðE;EÞ ¼ 0:3, CðE; IÞ ¼ 0:4, CðI; EÞ ¼ 0:2 and CðI; IÞ ¼
0:1 [Fig. 2 (I) (a), right]. The synaptic strengths are
obtained from drawing from a uniform distribution over
[0,1] and then multiplying by strength weights wðE; EÞ ¼
30, wðE; IÞ ¼ %19, wðI; EÞ ¼ 60 and wðI; IÞ ¼ %19. The
connectivity weights C and the strength weights w reflect
what is known about the average connectivity and synaptic
efficacy in biological columnar networks. Various spatial
distributions of the neurons on the grid can be imple-
mented, if the probability for a connection from neuron j
to neuron i on the grid is chosen according to pconði;jÞ¼
Cði;jÞexpð%d2i;j=!

2Þ, where di;j¼jx̂i%x̂jj is the Euclidean

distance between the ith and the jth neurons’ position on
the grid [Fig. 2 (I), (a), (b), left]. ! controls both the
number and the typical length of the connections, varying
from unconnectedness (! ¼ 0) over local next-neighbor
connectivity (! ¼ 1) to global connectivity (! ¼ 1).
This model is compared to a control network with the
same !, but a uniformly set C (for establishing an equiva-
lent amount of neural activity, C& 0:37, Fig. 2 (I) (b).
In the LEI network, additionally the biological layering is
taken into account. This is done by implementing three
layers f2=3; 4; 5=6g, each of them containing an excitatory
and an inhibitory population. The often used aggregation
of layers 2=3 and of layers 5=6 originates in the difficulty
to discern in physiological studies the precise layer mem-
bership of neurons. The recurrent connections within the
individual layers follow the connection probabilities and
strengths of Ref. [7]; as in the biological example input
mostly feeds into layer 4. Layer 2=3 is the hidden layer, the
output neurons are confined to layer 5=6 [Fig. 2 (II) (a)].
The biological example is compared to networks obtained
by replacing at each synapse with probability p 2 ½0; 1(
the pre- and postsynaptic neurons by neurons chosen from
the pooled neuronal ensembles of the same kind [excita-
tory or inhibitory, Fig. 2 (II) (b)]. This rewiring procedure
retains the overall connectivity and weight distribution
between the excitatory and inhibitory populations, but
gradually removes the three-layered structure.
Reservoir network pattern recognition.—If we want to

measure for a given columnar realization the recognition
rate R, we must be careful to not change its wiring by
the learning process. This is avoided by using reservoir
(or liquid state) neural networks (LSN), a paradigm that is
successfully used, e.g., in robot motion planning [9]. In
these networks, learning is confined to so-called read-out
neurons accessing the network’s periphery only. This allows
us to assess the pure effect of the inner-columnar wiring on
computation. We give a brief outline only, for details see our
SupplementalMaterial Sec. (1a) [10]. LSN associates k pairs
fuðtÞi; yðtÞigi2f1;...;kg of input/output sequences of individual
sequence length Ti (so that t 2 f1; . . . ; Tig; input vectors
u have dimensionality Nu, output vectors v have dimen-
sionality Ny). An input sequence uðtÞi stimulates directly,
via aweightmatrixWin, a reservoir ofNx neurons. Reservoir
neurons are connected by synapses. Synaptic output is
relayed according to the connectivity matrixW implement-
ing the wiring by means of a positive weight for excitatory, a
negative weight for inhibitory and a zero weight for missing
connections. Let xðtÞi denote the generated reservoir state
vector, let T ¼ P

Ti denote the total time spanned by the
input patterns, letX denote theNx ! T-matrix of states, and
let Y denote the Ny ! T matrix of the associated patterns.
The desired relation WoutxðtÞi ’ ydðtÞi leads directly to the
least-squares optimized readout matrix

W out ’ YXþ;

FIG. 2 (color). (I) (a) EImodel, (b) EI-control network (uniform
synaptic weights w, ! ¼ 2). pcon: probability of a synaptic con-
nection among neurons of distance d forC values as in the text,w:
synaptic strength of the connections. (II) (a) LEI-model, (b) LEI-
control network. Input strengths to populations are color coded.
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if Xþ is the (Moore-Penrose) pseudoinverse of X. Upon
feeding the input and the desired output signals into the
reservoir, after a transient phase the optimized output matrix
Wout is calculated. Pattern recognition proceeds by feeding
the input pattern into the reservoir and then using Wout to
evoke the desired response.

Neuron models.—To arrive at network-element indepen-
dent statements, as the nodes of the network we tested
various neuronal membrane voltage dynamics models.
They all led to coherent results. We will report exemplarily
the results from leaky integrate-and-fire (membrane decay
constant !m ¼ 30 ms) and from fast simple Izhikevich
spiking neuron dynamics [11]. For convenience, we will
detail the generally accepted parameter values used for the
reported results, although substantial ranges of parameters
led to consistent conclusions. Average neuronal activity
depends on W, on the inputs and on the synaptic weights.
To ensure similar levels of neuronal activity, the connec-
tivity matrices W were scaled to have a common largest
eigenvalue (1 for EI networks, 0.2 for LEI networks).
Win was determined by drawing from over [#0:2, 0.2]
uniformly distributed random numbers (for Izhikevich
neurons a scaling by 30 provided the standard parameter
scale). Input and synaptic efficiencies scaling guaranteed
that (i) neurons could be excited by their presynaptic
partners without reliance on input, and (ii) that the firing
rates generated from signal and recurrent input were suffi-
ciently distant to saturation (fsat ¼ 1=!), thus confining all
the networks to the same dynamic range. We used expo-
nential synapses (decay constant !s ¼ 2 ms). Original
LSN generates for every input vector an output vector,
so that the readout is memoryless (ml). For classification
tasks it is advantageous to have a memory span of a size
comparable to the stimulus length. Otherwise, stimuli con-
taining similar parts (e.g., phonemes in speech recognition)
may be confused. A more advanced integration readout
(int) resolves this problem by calculating the read-out
vector as the stimulus-averaged firing rates of the neurons.

Results.—Two popular time series classification tasks
serve as real-world recognition rate benchmarks: Single
Arabic Digit speech recognition (13 Mel Frequency
Cepstral Coefficients for 10 classes of digits spoken by
88 subjects [12]) and Australian Sign Language (Auslan)
recognition (22 parameters for 95 signs, recorded from a
native signer using digital gloves and position tracker
equipments [13]). Two general observations emerge from
the obtained results (Fig. 3). Whereas the particular neuron
models (and the underlying circuit parameters) are of
secondary influence (blue vs red curves), the integration
readout (right panels) has a clear advantage over instanta-
neous readout (left panels). The closeness of the EI net-
work to their control results demonstrates that the
characteristics Cð. . .Þ have little impact on computational
power, whatever the network type specified by " should be.
The decrease of R with increased " for the Auslan task

reflects that the benefit of the int-readout method dimin-
ishes if the network is made more homogeneous and that
for resolving the large number of categories present, local
network inhomogeneities are necessary. The emerging
two-phase behavior is not primarily a network-size artifact.
It persists even if the network size is enlarged to contain
103 neurons, but can be softened by fine-tuning the readout
method, with EI and control results always staying close.
As low recognition rates frommemoryless readout could

be from applying the input signal to all neurons, thus
constantly overwriting memory that otherwise would be
retained in hidden neurons, we examined in the second row
of Fig. 3 the role of the hidden neurons, by measuring R
for networks having a reduced fraction I of input signal
receiving neurons. If hidden neurons were beneficial, we
should again expect a maximum of R for some value of I.
In the Arabic Digit task with memoryless readout we do
not observe a dependence on the number of actually used
neurons (i.e., beyond I ¼ 0:1, where we have on average
13.5 input receiving neurons, at an input dimensionality
of 13). The similarity of the results obtained for " ¼ 0
and for " ¼ 2 suggests that nonlinear interaction among
input receiving neurons does not significantly enhance
performance. In the Auslan task we see a monotonic

FIG. 3 (color). Recognition rate R for (a) Arabic Digit, and
(b) Auslan recognition. Each data point represents an average
over at least 20 experiments following a normal-like distribution
each [cf. Supplemental Material Sec. (1b) [10]]. Blue: leaky
integrate and fire, red: Izhikevich neurons. Left column: mem-
oryless (ml), right column: integration (int) readout. (I) EI net-
work, dependence on rewiring parameter " (control networks:
dashed curves), and on ratio I of input receiving neurons, at
local connectivity (i.e., " ¼ 2). Ocher: Izhikevich neurons with
" ¼ 0. (II) LEI networks, dependence on rewiring probability p.
p ¼ 0: layered, p ¼ 1: homogeneous control network.
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dependence of R on I, because for most values of I the
number of input receiving neurons is smaller than input
dimensionality (i.e., we have I! 135< 95). The EI net-
work with biology-motivated wiring thus does not perform
significantly better than the control network. The results
from LEI networks [Fig. 3(b)] corroborate the observa-
tions made for the simpler model: A significant depen-
dence of R on the rewiring probability p is not observed.
These observations are compatible with earlier findings for
LSN [9]. Throughout this section, the displayed results are
averages over at least twenty experiments. Error bars are
suppressed, due to the large number of curves collected in
each of the subfigures. Characteristic examples of the
distributions over which the averages are taken are shown
in the Supplemental Material, Sec. (1b) [10]. All compu-
tations were repeated with models of columns containing
doubled, quadrupled and—occasionally—eight times the
number of the original number of neurons, yielding a full
corroboration of the findings.

Computation by interaction among columns.—Upon
zooming out from the columnar scale I to the inter-
columnar scale II, we wrap up the computation by single
columns and relate it to the computations performed by
other columns. Rulkov [14] demonstrated that any desired
neuronal firing behavior representing columnar response
can be expressed by a suitably chosen discrete map.
Consequently, the natural model to use is that of a coupled
map lattice [15,16] of chaotic maps (obtaining in this
way the response flexibility required by computation
[17]). An illustration of this approach is provided in the
Supplemental Material, Sec. (2a) [10]. A broad range
of network architectures can again be accessed if
the probability p of two lattice sites i, j of distance di;j
to be connected is chosen according to pi;j¼!di;j

#"þ
ð1#!Þdi;j## (Fig. 4). Given ! ¼ 1, the system can be

changed from a globally coupled network (" ¼ 0) into
a nearest-neighbor coupled network (" ! 1). For
0< !< 1, # ¼ 0, " ! 1, the network is coupled to the
nearest neighbor with probability 1 and to all other nodes
with probability (1# !), up to the cutoffM. As a result we
obtain a combined nearest neighbor- and random-coupled
network. For " ¼ 0:5, # ¼ 2:0 (and ! ¼ 0:2), we have a
model of a doubly fractal probability distribution sug-
gested by the biological data [Fig. 1, region (II)]. The
cutoff value M determines, together with the underlying
topology, the average number of connected nodes k. By
means of the connectivity matrix even finer network details
can be implemented. The interaction of the local chaotic
site maps f is modeled by diffusive coupling.

We characterized the computation performed at this
scale by the average speed by which information
propagates through a coupled map network (speed of
information transfer ¼ SIT). Using the framework devel-
oped in Ref. [18], SIT is the result of two independent
contributions: The chaotic instability of the site map

(which leads to an average exponential growth of the
initial infinitesimal perturbation d0 applied at site 0)
and the diffusive coupling (which results in a Gaussian
spreading). The two effects lead at site i to a perturbation
of size j$xiðtÞj ' d0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4%Dt

p
( expð~&t# i2

4DtÞ [18], where
D denotes the diffusion coefficient and ~& is the Lyapunov
exponent of the site map. The velocity of the information
wave front is determined at the borderline of damped and

undamped perturbations, which leads to SIT ¼ 2
ffiffiffiffi
~&

p ffiffiffiffi
D

p
.

Assuming essentially identical local site maps, we
measured SIT in arbitrary units by calculating

ffiffiffiffi
D

p

from the Markov chain mean transition time. Details
of this approach are exhibited in the Supplemental
Material, Sec. (2b) [10]. Upon comparing SIT for doubly
fractal, single fractal, random and nearest-neighbor top-
ologies at an equal average number of connections to a
cell k (Fig. 5, left), we found a consistent enhancement
of SIT by the doubly fractal architecture. The enhance-
ment persists across a wide selection of pairs of expo-
nents as long as the qualitative size of the exponents is
preserved and is independent from the network size
[cf. Supplemental Material Sec. (2c) [10]].
We then conditioned SIT on the minimal number of

connections kmin ensuring that the propagating informa-
tion induces a coherent computational state. Technically,
this translates into the cells’ ability to synchronize in
a generalized sense. An elementary computation shows
that full dynamical synchronization of chaotic sites

emerges if the condition je~&#"'kj<1 holds, where
'k are the nonzero eigenvalues of the graph Laplacian

FIG. 4. Main connectivity classes compared (p: connection
probabilities, d: distance, M: cutoff, see text).

FIG. 5 (color). Left: SIT as a function of cell connections k.
From top: doubly fractal (! ¼ 0:2, " ¼ 0:5, # ¼ 2:0), fractal
(! ¼ 1, " ¼ 0:7), random, n.-n. topology. Network sizes: N ¼
4096, averages over 100 experiments. Right: Connections kmin

required for synchronization, and associated TWL. N ¼ 512, 10
experiments.
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dependence of R on I, because for most values of I the
number of input receiving neurons is smaller than input
dimensionality (i.e., we have I! 135< 95). The EI net-
work with biology-motivated wiring thus does not perform
significantly better than the control network. The results
from LEI networks [Fig. 3(b)] corroborate the observa-
tions made for the simpler model: A significant depen-
dence of R on the rewiring probability p is not observed.
These observations are compatible with earlier findings for
LSN [9]. Throughout this section, the displayed results are
averages over at least twenty experiments. Error bars are
suppressed, due to the large number of curves collected in
each of the subfigures. Characteristic examples of the
distributions over which the averages are taken are shown
in the Supplemental Material, Sec. (1b) [10]. All compu-
tations were repeated with models of columns containing
doubled, quadrupled and—occasionally—eight times the
number of the original number of neurons, yielding a full
corroboration of the findings.

Computation by interaction among columns.—Upon
zooming out from the columnar scale I to the inter-
columnar scale II, we wrap up the computation by single
columns and relate it to the computations performed by
other columns. Rulkov [14] demonstrated that any desired
neuronal firing behavior representing columnar response
can be expressed by a suitably chosen discrete map.
Consequently, the natural model to use is that of a coupled
map lattice [15,16] of chaotic maps (obtaining in this
way the response flexibility required by computation
[17]). An illustration of this approach is provided in the
Supplemental Material, Sec. (2a) [10]. A broad range
of network architectures can again be accessed if
the probability p of two lattice sites i, j of distance di;j
to be connected is chosen according to pi;j¼!di;j

#"þ
ð1#!Þdi;j## (Fig. 4). Given ! ¼ 1, the system can be

changed from a globally coupled network (" ¼ 0) into
a nearest-neighbor coupled network (" ! 1). For
0< !< 1, # ¼ 0, " ! 1, the network is coupled to the
nearest neighbor with probability 1 and to all other nodes
with probability (1# !), up to the cutoffM. As a result we
obtain a combined nearest neighbor- and random-coupled
network. For " ¼ 0:5, # ¼ 2:0 (and ! ¼ 0:2), we have a
model of a doubly fractal probability distribution sug-
gested by the biological data [Fig. 1, region (II)]. The
cutoff value M determines, together with the underlying
topology, the average number of connected nodes k. By
means of the connectivity matrix even finer network details
can be implemented. The interaction of the local chaotic
site maps f is modeled by diffusive coupling.

We characterized the computation performed at this
scale by the average speed by which information
propagates through a coupled map network (speed of
information transfer ¼ SIT). Using the framework devel-
oped in Ref. [18], SIT is the result of two independent
contributions: The chaotic instability of the site map

(which leads to an average exponential growth of the
initial infinitesimal perturbation d0 applied at site 0)
and the diffusive coupling (which results in a Gaussian
spreading). The two effects lead at site i to a perturbation
of size j$xiðtÞj ' d0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4%Dt

p
( expð~&t# i2

4DtÞ [18], where
D denotes the diffusion coefficient and ~& is the Lyapunov
exponent of the site map. The velocity of the information
wave front is determined at the borderline of damped and

undamped perturbations, which leads to SIT ¼ 2
ffiffiffiffi
~&

p ffiffiffiffi
D

p
.

Assuming essentially identical local site maps, we
measured SIT in arbitrary units by calculating

ffiffiffiffi
D

p

from the Markov chain mean transition time. Details
of this approach are exhibited in the Supplemental
Material, Sec. (2b) [10]. Upon comparing SIT for doubly
fractal, single fractal, random and nearest-neighbor top-
ologies at an equal average number of connections to a
cell k (Fig. 5, left), we found a consistent enhancement
of SIT by the doubly fractal architecture. The enhance-
ment persists across a wide selection of pairs of expo-
nents as long as the qualitative size of the exponents is
preserved and is independent from the network size
[cf. Supplemental Material Sec. (2c) [10]].
We then conditioned SIT on the minimal number of

connections kmin ensuring that the propagating informa-
tion induces a coherent computational state. Technically,
this translates into the cells’ ability to synchronize in
a generalized sense. An elementary computation shows
that full dynamical synchronization of chaotic sites

emerges if the condition je~&#"'kj<1 holds, where
'k are the nonzero eigenvalues of the graph Laplacian

FIG. 4. Main connectivity classes compared (p: connection
probabilities, d: distance, M: cutoff, see text).

FIG. 5 (color). Left: SIT as a function of cell connections k.
From top: doubly fractal (! ¼ 0:2, " ¼ 0:5, # ¼ 2:0), fractal
(! ¼ 1, " ¼ 0:7), random, n.-n. topology. Network sizes: N ¼
4096, averages over 100 experiments. Right: Connections kmin

required for synchronization, and associated TWL. N ¼ 512, 10
experiments.
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double power-law 
connectivty matters

 R.S et al PRL 2014 
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 Follow the money… Change of approach:  
‘explain the brain’!

 - > follow the information flow
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Hearing system properties:
- Ancestral to the nervous system  

(hope: explain aspects of the brain from the sensors’ perspective) 
- Verifiable (‘big’ unexplained data) 
- Simple fundamental physics-based model  
- Powerful if embedded into physiological context 
- Explains a number of puzzling observations 
!
!
!

human:  
an onion..

physical signal

sensor shell
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Overview:
1995:    Wiesenfeld: Small signal amplifiers, PRL 
1999:    Start: Kern-Stoop cochlea, from scratch, based on fluid dynamics, energy-based approach 
2000:    Eguiluz, PRL: Hopf concept  
2002     Kern’s thesis finished 
2003:    Kern & Stoop, PRL 
2003:    Comment to Magnasco’s PRL 
2004:    Stoop & Kern, PRL, PNAS 
2004:    Efferent tuning, submitted to SNF 
2005:    Coupling reconsidered, v.d.Vyver 
2005:    Hardware cochlea, v.d.Vyver 
2006:    v.d.Vyver’s thesis, ETHZ 
2006:    US Patent filed 
2006:    Insect hearing: Hopf in Drosophila antenna 
2008:    Cochlear re-mapping 
2010:    Local correlations of the perceived pitch, PRL 
2011:    Effect of Nuclei, NECO 
2013:    Pitch sensation involves stochastic resonance, Sci. Rep. 
2014:    Efferent tuning implements listening, Phys. Rev. Appl. 
2014:    Pitch sensation shaped by cochlear fluid, Nat. Phys. 
2016:    Signal-coupled subthreshold Hopf-type systems show sharpened collective response, PRL 
2016:    Auditory power-law activation avalanches exhibit a fundamental computational ground state, PRL 
2017:    Mammalian hearing threshold explained, Sci. Rep. 
2018:    “Harmony” perception explained from network principles	
!
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1840: Berlin vs. Dresden

“Wodurch kann über die Frage, was zu einem Tone gehöre, entschieden werden, als eben durch das Ohr?”!
(How else can the question as to what makes out a tone, be decided but by the ear?)

August Seebeck 1844

Q: What do we hear and why?

Ohm                      Seebeck 

What is the physical description 
of ‘pitch’ sensation?
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Mammalian cochlea 
more than a frequency analyzer..
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• simple tone: A*sin(2*π*fo*t) 

!
• complex tone:  

(frequency components 

 fo, 2fo, 3fo, …) 

!
• missing fundamental 

simple missing fundamental

1750/2000 ->1800/2000 Hz reversed

• Smoorenburg’s two-tone experiments:

Experiments

pitch down (250 -> 200 Hz, fundamental), or pitch up ?

complex
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TRuedi Stoop / Institute of Neuroinformatics / ruedi@ini.phys.ethz.ch 17

Systems close to a period-doubling 
bifurcation can be used as a small 
signal amplifier: !
Signals with a certain ‘critical’ 
frequency are strongly amplified.

Andronov-Hopf: Brun at al.,  PRL 1985
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dynamics, neglecting, for example, the quasiparticle con-
tribution and the presence of additional tuning circuits
employed in coupling in the external signal. ] Without
passing to the limit b, =0 (corresponding to Q= co/2), it is
still true that maximum gain occurs at the bifurcation
point a=0. Taking both @~0 and 5~0 results in the
"infinite gain" of Soerensen et al.

Turning next to the unbiased mode [Eq. (4.3)], we
deduce from condition (4.4) that the system must operate
near a saddle-node bifurcation [see Eq. (3.6) and Fig. 1] to
achieve good gain. Indeed, Chiao et al. reported the oc-
currence of what they termed a "phase instability" in the
dynamics of their microbridge SUPARAMP's. ' In fact,
we can deduce something else about the dynamics of the
unbiased system. Note that Eq. (4.3) has the symmetry
discussed in case two of Sec. III. However, Eq. (3.18a)
shows that the experimentally achieved condition Q=co
(= —,

' for the time scaling used in Sec. III) will not result
in high gain, so that the amplifier is not near the onset of
a symmetry-breaking instability. Consequently, in order
to reach a high-gain region of parameter space for Q =co,
the system must first undergo a symmetry breakin-g bifur
cation as A is increased from zero. That this is so would
be very easy to check experimentally —the signature of a
symmetry-breaking bifurcation is the appearance of even
harmonics in the output power spectrum.

Recapping, the gain achieved in the three-photon,
biased mode is due to the presence of a nearby period-
doubling instability, while the success of the four-photon,
unbiased mode is due to the presence of a saddle-node bi-
furcation.

As a further conclusion, we note that the unbiased sys-
tem governed by Eq. (4.3) could be successfully operated
in the three-photon mode, where Q =co/2: After all, it is
well-known that the governing equation (with 5=0)—
which is just the equation of motion for the driven,
damped pendulum —has solutions which undergo period-
doubling instabilities' ' ' (though only after the
symmetry-breaking bifurcation has occurred ' ). Conse-
quently, if the parameters are tuned so that the system is
near the onset of a period doubling, the same analysis of
Sec. III, case three applies just as it does for the biased-
junction mode.

C. Virtual Hopf phenomenon and tunable resonances

We have seen that, in order to achieve large amplifica-
tion factors, both the bifurcation parameter e and the de-
tuning frequency 6 must be small. One ramification of
these conditions is that the range of input frequencies Q
that are significantly amplified may be very small. Near a
period-doubling instability, for example, the system acts
as a small-signal amplifier for only the sequence of nar-
row windows centered at Q =n+ —, and of width of order
e. Indeed, the higher the gain is made (by reducing e), the
narrower these windows become (see Fig. 5).

Happily, this situation can be overcome in a large class
of systems, so that all frequencies can be amplified. This
relies on the occurrence of the virtual Hopf
phenomenon: ' In msence, this phenomenon allows the
centers of the resonance curves to be continuously tuned,

500—

Q)

C
C5.

CL 500—
QP
iQ

0
E

l00—

Norma t(zed Frequency Di fference & (~ l0 ~)
FIG. 7. Amplitude response V(co) vs signal detuning fre-

quency 4, for an analog simulation of Eqs. (4.1) and (4.2). Data
shown for three different parameter values, just before the onset
of a period-doubling bifurcation. The circles, squares, and tri-
angles correspond to successively smaller bifurcation parameters

»li kl =2~Repk,
arQLk =2p' Impk

(4.8)

(4.9)

so that a bifurcation occurs when (at least) one of the pk
exits the unit circle. A period doubling corresponds to
pi ———1, while a Hopf bifurcation corresponds to a
complex-conjugate pair p&,p2 with modulus unity.

To fix ideas, consider the driven pendulum equation

8+ye+aPosin8=A cos(cui) .
Figure 8 depicts the behavior of the multipliers between
successive period doublings, as the driving amplitude A is
increased. This system has two Floquet multipliers,
which are either both real or a complex-conjugate pair. In
the latter case, the pair must lie on the circle

while their width remains narrow. We now give a brief
review of the virtual Hopf phenomenon and then discuss
its potential advantages for small-signal amplification.

The virtual Hopf is a particular kind of noisy precursor
of period-doubling bifurcations, which occurs when the
Floquet multip!iers pk, which are related to the Floquet
exponents pk via the formula

Pk =e (4.7)

behave as in Fig 8. (Th.e Floquet multipliers are simply
the eigenvalues of the linearized Poincare return map. )

This behavior must occur, for example, between succes-
sive period-doubling bifurcations in all purely dissipative
second-order nonautonomous and third-order autonomous
systems, a class which includes the driven Duffing oscilla-
tor, the driven pendulum, and the Lorenz equations.
From Eq. (4.7), we have (taking T =2m )

I Key for understanding hearing:  
nonlinear ’small signal amplifier’ 
!Wiesenfeld et al. PRL 1984/5/6: 
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Biological evidence of Hopf small signal amplifiers
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:  A.-Hopf bifurcation

P’m(x), restoring force, negative stiffness  
(P’m(x)<0: active amplification)!

R.S. et al, Eur. Biophys. J. 2006 
T.L., F.G. & R.S. Sci. Rep. 2015

Generalized van der Pol oscillator

Dynamics above bifurcation demonstrate the Hopf property 

experiment simulation
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Response:

Close to bifurcation point and resonance:

Before bifurcation point, small F: 

Charakteristic of Hopf-bifurcation

R = F 1/ 3

R = − F / µ

wc =1000 Hz, = -20, governs G
F = {0.004 10i, i=0..7}

f/50

LogR(F)

Active response R from a forced Hopf system 
(F: forcing)

(Eguiluz et al. PRL 2000)
Frequency
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(Lorimer, Gomez, R.S., Sci. Rep. 2015)

II From many sensors to a cochlea: 
the wiring problem

10 micrometer

Hudspeth 2013
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experiments, we used the all-to-all topology (replacing g=2
byg=N); other coupling topologies yield qualitatively similar
effects. Our results shown in Figs. 4(a) and 4(b) corroborate
for an ensemble of N ¼ 10 systems, with frequencies
distributed around 200 Hz, the expected small-signal ampli-
fication characteristics of a singleHopf system, at augmented
excitability, with a simple scaling relation of exponent −1
[Fig. 4(c)]. Without requiring a precise building principle,
signal coupling drives the ensemble towards a common
characteristic frequency fc and establishes a coherent
response profile that is largely independent of the individual
system frequency distribution.
The strength of our setting becomes apparent when

identifying it as a paradigm of coupled auditory hair cells.
While Refs. [32–36] used very detailed hair-cell models
(involving a multitude of equations and parameters),
we obtain what we see as the most salient results [34]
by coupling subthreshold normal-form Hopf systems
[cf. Fig. 4(c)]. By relaxing all-to-all to local coupling,
we observed the emergence of synchronized subnetworks
similar to the superparamagnetic phase in statistical phys-
ics, a paradigm that has been proven to be computationally
extremely efficient, e.g., for clustering [37]. We expect such
approaches to become pivotal for getting a grip on the

claimed increased computational efficacy of deep layer
neural networks [38], for understanding of the behavior
and function of the mammalian suprachiasmatic nucleus
[31,39–41], or for the explanation of the emergence of
spontaneous otoacoustic emissions [42,43] in the cochlea.
How well does our paradigm reflect also the behavior of

(synchronized) neurons in the superthreshold regime?
Beyond the bifurcation, our center frequency fc becomes
a more complicated function of the coupling g [Fig. 5(a)].
While for two systems fc remains fixed (I), for more
systems, fcðgÞ can either increase (II) or decrease (III) with
g, until saturation dominates. Introducing a time delay τ
into the coupling, where, for two systems, the couplings in
Eqs. (2) would be replaced by g21

2 z2ðt − τÞ and g12
2 z1ðt − τÞ,

maintains a nontrivial dependence of fc on the coupling but
introduces an even richer behavior. For N systems, we
considered that each system obtains from all other systems
the same time-delayed signal. This is a simple setting, in
particular, from the cochlear perspective, but is sufficient to
assess the general effect of a signal delay. For small delays
(τ < 1 ms), even for two systems fc changes with the
coupling strength and delay [Fig. 5(b)], where the depend-
ence has some resemblance to that of coupled limit-cycle
systems [44]; for a similar behavior in suprachiasmatic
nucleus modeling, see Ref. [45]. At larger delays τ$ðgÞ, a
discontinuous jump of fc occurs. This is repeated upon
further increased delays, a phenomenon that parallels the
change of locking observed in driven systems. The critical
coupling value gc varies with τ only mildly, in contrast to
the behavior shown by fc.
Also for coupled realistic neurons, the synchronization

frequency is a function of the coupling strength; this is in
full contrast to the invariable synchronization frequency of
diffusively coupled Kuramoto phase oscillators [46]. In our
paradigm, fc depends primarily on the distribution of the
system frequencies ωi. A bias in the coupling changes the
relative dominance among the systems and introduces a
change in fc. Only for perfectly symmetrical situations
(e.g., 180, 200, and 225 Hz or 100, 100, 200, and 200 Hz)
do we have fc ¼ const. In many biology-relevant cases, a

FIG. 4. Response of N ¼ 10 systems, characteristic frequencies
distributed around 200 Hz, to a test signal of amplitude −60 dB.
(a) Uncoupled, μ ¼ −0.2, (b) signal-coupled (dashed curve,
μ ¼ −0.3; solid curve, μ ¼ −0.2), exhibiting a coherent and
sharply tuned response around fc ≈ 200 Hz. (c) gc þ μ as a
function of N, for ωch;i ¼ ωch and μi ¼ μ ¼ −0.1. The same
behavior (with a line shift) is obtained for reasonable variations of
ωch;i and μi. The value of μ is reflected in the first data point
obtained for N ¼ 2, which implies gc ¼ −2μ [cf. Eq. (5)
and Fig. 2].

FIG. 5. (a) fc as a function of the coupling g beyond gc
(μ ¼ −0.1 for all systems). (I) Two systems (180/225 Hz);
(II) three systems (180, 200, and 300 Hz); (III) five systems
(120, 160, 200, 240, and 300 Hz). (b) fc for τ-delayed coupling
(two systems at 180 and 225 Hz, μ1;2 ¼ −0.1).
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hold the hair bundle at these positions, thereby describing the intrinsic force-displacement 
relation of the hair bundle [15; 16].  For each displacement step, we estimated the elastic 
response of the hair bundle by recording the force ~3 ms after the onset of stimulation to 
allow just enough time for the viscous response to vanish and minimize the mechanical 
relaxation provided by adaptation [16]. 

We used iontophoresis to rapidly change the local Ca2+ concentration near a hair 
bundle.  Coarse microelectrodes were fabricated from borosilicate capillaries, bent 
through an angle of ~90° in their tapered region and then filled either with 2.5 M CaCl2 
or 350 mM disodium ATP (here used as a Ca2+ chelator).  At a distance r = 3 µm from 
the hair bundle, this technique allowed an increase of ~20 µM of Ca2+ concentration per 
nanoampere of iontophoretic current. 

2.2 Theoretical description of active hair-bundle mechanics 

This description (detailed in [7; 14]) is based on the gating-spring theory of mechano-
electrical transduction [17] and a myosin-based model of adaptation [18; 19]. 
 

Figure 1.   A:  Schematic representation 
of a hair bundle.  We assumed that N 
transduction elements, here lumped into 
a single element, operate in parallel 
within a hair bundle.  An external force 
F is applied to the tip of the hair bundle 
and defined positive when oriented as 
depicted here.   B:  Functional view of a 
transduction element (adapted from 
[18]).  At steady state, the active force 
exerted towards the tip of the stereocilia 
by a group of ~60 myosin molecules is 
balanced by an elastic restoring tension 
in the tip link, thereby defining the 
resting open probability of the mechano-
sensitive transduction channel.   C:  
Mechanical arrangement.  Transduction 
channels (MET) of open probability Po 
are connected to gating springs of 
stiffness KGS and anchored to the actin 
cytoskeleton of the stereocilia, 
dynamically by adaptation motors (M) 
that can change their position Xa and 
statically by extent springs of stiffness 
KES that limit the extent of adaptive 

movements of the motors. The external force F = KF(∆-X), exerted by means of a flexible fiber of stiffness KF, 
affects tension in both gating and pivot springs, the later being of stiffness KSP and operating in parallel to the 
former. The speed of hair-bundle motion is inversely proportional to the friction coefficient λ. Opening of a 
transduction channel evokes a decrease of gating-spring extension that amounts to a motion of size D of the 
bundle’s top [17]. When the combined tension in gating and extent springs differs from the active force Fa that 
the adaptation motors produce at stall, the motors are moving. Motor speed is inversely proportional to λa, 
which has units of a friction coefficient and represents the slope of the force-velocity relation of the motors near 
stall condition. The motor force Fa is down-regulated by the Ca2+ concentration at the motor site and thus 
depends on Po. All variables are expressed at the top of a hair bundle along the stimulation axis. 

 

⌫, ⇢,m , BM-stiffness µ

A.K. PhD thesis ETHZ 2003

no coupling signal-coupling: signal sharpening !

Generic properties: 
Individual vs. signal-coupled Hopf elements
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Print:
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Vyver, Martignoli., R. S.  Appl. Phys. Lett. 2008;  
!
US-Patent 2007-2012

IV Active elements - fluid coupling:  
computational simplification  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Martignoli and Stoop Phys Rev Lett, 2010 
Gomez and Stoop Nat Phys, 2014 
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‘Hopf cochlea’
Hopf fluid



Nonlinear phenomena explained:

3

Compression

Compression of strong inputs is one characteristic nonlin-
ear feature of the mammalian cochlea. Particularities of the
compression also justify the usage of the Hopf small signal
amplifier as the underlying amplification concept.
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FIG. 5: Iso-frequency input-output characteristics for (a) chinchilla
[11], (b) Hopf cochlea [13].

Nonlinear effects: two-tone suppression

Mutual compression of neighboring tones is another non-
linear feature of human hearing. The effect can be considered
as a prototype of computation done by the mammalian hearing
sensor [14].
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FIG. 6: Mutual suppression by two neighboring tones (‘test tone’
and ‘suppressor tone’), as a function of their intensity: (a) chinchilla
[15], (b) Hopf cochlea [13].

Combination tones

The nonlinearities in the amplification process also in-
troduce, by means of amplifier interaction, additional tones
called combination tones. Such tones, and in particular their
decay laws, are of great importance for the human perception
of pitch.
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FIG. 7: Amplitude of combination tones (‘ct’) generated by simul-
taneous stimulation with two pure tones for (a) chinchilla [16], (b)
Hopf cochlea [13]. Top panels: dependence on f1; bottom panels:
dependence on f2.
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FIG. 8: Basilar membrane response spectrograms for two-tone stim-
ulation of amplitudes 30, 40, 50 dB sound pressure level (SPL) (fre-
quencies f2/ f1 = 1.05 and 2 f2 − f1 = fch) for (a) chinchilla ( fch =

7.5 kHz) [16], (b) Hopf cochlea, 6th section ( fch = 5.656 kHz) [17].
Grey dashed lines: exponential amplitude scaling (∆ f = f2 − f1).

Mutual suppression by two neighboring tones	
3

Compression

Compression of strong inputs is one characteristic nonlin-
ear feature of the mammalian cochlea. Particularities of the
compression also justify the usage of the Hopf small signal
amplifier as the underlying amplification concept.
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Nonlinear effects: two-tone suppression

Mutual compression of neighboring tones is another non-
linear feature of human hearing. The effect can be considered
as a prototype of computation done by the mammalian hearing
sensor [14].

-50 -40 -30 -20 -10

-20

-10

0

10

none
-40

-30
-20

-10

test tone: 1.76 kHz
suppressor: 2.2 kHz

(a) Chinchilla, fch = 8 kHz (b) Hopf cochlea, fch = 1.76 kHz

test tone intensity (dB1V)

am
pl

itu
de

 (
dB

1V
)

FIG. 6: Mutual suppression by two neighboring tones (‘test tone’
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Combination tones

The nonlinearities in the amplification process also in-
troduce, by means of amplifier interaction, additional tones
called combination tones. Such tones, and in particular their
decay laws, are of great importance for the human perception
of pitch.
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Phase characteristics

The phase behavior along the cochlea also follows that in
the biological example.
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Medial efferent inhibition

The effect of a tuning of the cochlea by efferent medial
olivocochlear stimulation has also been compared.
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!
AM sound (fcar = 850, fmod = 200 Hz)

V  Nonlinearity magic 
simple signals: complex networks! 
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Figure 1 | Cochlear excitation for a complex two-tone stimulation (simulated). a, Section connectivity scheme. b, ‘Complex’ spectrum, due to combination
tone (CT) emergence. c, Cochlear excitability pattern. d, CT saliency. Left panel: Black curves: signal power of frequencies f2 and of f1. Red curve: sum of
lower CT (f< f1). Right panel: Black curve: added signal power from frequencies f1 and f2. Red curve: signal power of lower CT. Blue curve: signal power of
higher CT (f> f2) relative to the total signal power.

and a macroscopic description (typically, basilar membrane or
hair-bundle movement). This model reproduces the presently
accepted pitch-related biophysical data17 extremely well (see the
Supplementary Methods of ref. 5 and refs 18,19 and further
evidence presented below and in our Supplementary Information).
The link to human-perceived pitch and to pitch from the cat
cochlear nucleus is provided by the faithfulness of the auditory
nerve19,20 in relaying the ‘cochlear’ pitch within the auditory
periphery, and to the brain. We will show that the fluid in the
cochlea (that in many cochlea and pitch perception models is
neglected; for example, ref. 21), is pivotal for obtaining pitch as
perceived by humans. It will emerge that the perceived pitch can be
seen as the overall characterization of a complex cochlear excitation
pattern (Fig. 1b–d).

Cochlea physics overview
In the cochlea, pressure variations generated by incoming sounds
are transformed into incompressible and inviscid hydrodynamic
waves that, by moving down the cochlea, cause small basilar
membrane displacements. In the case of a pure sound, this wave
travels down the cochlea to a point, determined by its frequency,
where the wave stalls and immediately after is stopped. Several
physical approaches have been used to describe the physics of
this process; our description focuses on how energy is distributed
in the cochlea in a quasi-steady state condition22 (the details of
this approach are outlined in refs 23–26). The fact that the wave
reaches a maximum at frequency-determined coordinate xch along

the cochlea (the ‘characteristic’ place) can be obtained from a
dispersion relation that relates to the passive—that is, unamplified—
wave. A parallel consequence is that shortly beyond this point, at
a nearby location xc, the wave amplitude experiences a precipitous
decay. The decay is due to the fluid’s internal friction 4⌫k(x ,!)2,
where k(x ,!) is the wave number and ⌫ is the kinematic viscosity.
This e�ect prevails over the friction between the moving fluid
and the vibrating basilar membrane surface and other e�ects
(see refs 23–25 and our Supplementary Information). Essentially
identical dispersion relations to those emerging from our analysis
have been obtained earlier from a Wentzel–Kramers–Brillouin
(WKB) approach27. Regarding active amplification, it was shown
decades ago that dynamical systems close to oscillation bifurcation
could serve as small signal amplifiers28–30. In refs 31,32 it was
suggested that systems close to a Hopf bifurcation could account
for all salient nonlinear properties of hearing. This is because Hopf
systems provide the correct exponent for the compressive regime
(1/3) (refs 21,33,34) due to the cubic nonlinearity of the Hopf
bifurcations (in contrast to, for example, saddle-node bifurcations
that also lead to oscillations). A stimulated Hopf process follows the
!ch-rescaled Hopf equation

ż=(µ+ i)!chz�!ch|z|2z�!chF(t), z 2C (3)

where !ch is the preferred (‘characteristic’, or ‘resonant’) frequency
of the Hopf system, F(t) is the stimulation signal and µ measures

NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics 531
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Cochlear excitation for a complex two-tone stimulation (simulated) : 	

Black: signal power of frequencies f2 and of f1  
Red: sum of lower CT (f < f1 )

Black: added signal power from frequencies f1 and f2 
Red:  signal power of lower CT 
Blue: signal power of higher CT (f > f2 ) relative to total  
          signal power.	
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2f1 � f2 ‘CT1’ CT is generated, via the interaction term !cha2ka⇤
k+1.

Further CTs are generated at frequencies !l, l < k � 1. Their
amplitudes a decrease according to a(l) /⇠ (!ch/!0|a1||a2|)k�1�l

(see Supplementary Information for details). The obtained decay
exponents are corroborated by numerical integration of equation (3)
for single Hopf elements.

CT–fluid connection
In contrast to single Hopf elements, in biology, CT of frequencies
lower than stimulus propagate down the cochlea until the waves
are amplified and stopped where their frequency matches the
characteristic frequency!ch. This leads to an asymmetric (low-pass)

and generally slower CT decay. Our setting perfectly reproduces this
behaviour (Fig. 2 and evidence given below). The basic problemwith
equation (2) therefore is: the strengths of the contributing CT not
only are CT specific, they moreover are asymmetrically distributed,
so that their contribution to the pitch cannot be inferred by a simple
ensemble-averaging argument. We argue that this ‘up-validation’
of the lower-frequency CT-amplitudes (saliently reflected for our
model in Fig. 1d) is the origin of the second pitch shift and that, for
this e�ect to happen, the presence of the cochlear fluid is su�cient.
To substantiate this statement, we scrutinize the behaviour of CT1,
which is the strongest (lowest-order) product of the two interacting
modes. We focus on a location with !ch =!CT1, to see how strong

NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics 533

© 2014 Macmillan Publishers Limited. All rights reserved

Where is pitch read off ? Smoorenburg: 
Perceived pitch = Residual pitch at hearing threshold

Hearing threshold

Inferred residual pitch

Model bounds  
(discretization)

Psychoacoustic  
experiments

F.G. & R.S., Nat. Phys. 2014
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(second pitch shift effect):  psychoacoustic data (crosses), measured data (full dots) 
 
Inset: ISI-histogram for f1 = 900 Hz, showing fp for k = 4 (left peak, for the rightmost cross)  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second pitch shift

first pitch shift law fp =(f1 + f2)/(2k + 1), k = 4, 
coherently violated  

Inset: ISI-histogram end of auditory nerve (S.M., F.G. & R.S. Sci. Rep. 2015)
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Second pitch shift:  
red: psychophysical experiments; black: model
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Red:    Psychoacoustic data (partial amplitudes 40 dB SPL)!
Black: Hopf cochlea simulation (7th section with fch = 1245 Hz, partial amplitudes -63 dB). !
Solid lines: classical predictions of the perceived pitch.

second pitch shift due to cochlear fluid: F.G. & R.S. Nat. Phys. 2014, 
requested slight ‘tuning’ of the Hopf amplifiers (no-flat tuning of Hopf parameters)

: solves Ohm-Seebeck dispute !

Two-frequency stimuli with f2 = f1 + 200 Hz. 
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0.7kHz region and (2) every fifth (semi-serial) section
at a final magnification of ×12,000–13,500 for the 1.6-kHz
region. For MCL109L, multiple blocks were selected to
investigate different cochlear regions (i.e., 0.35, 0.75, 1.3,
3.2, 6.3, 12.0, and 23.0kHz). Sections were cut parallel to
the reticular lamina, and micrographs were captured
from every fifth section at a final magnification of
×12,000–13,500. For the de-efferented ear, 93042L, a
block from the 1.0-kHz region was selected, sections were
cut horizontally, and micrographs were captured from
every fifth section at a final magnification of ×12,000–
13,500. For all the section series, neural elements were
traced by labeling the photographic montages of each
section in the series.

For immunohistochemistry, cochleas from CBA/CaJ
mice (6–8 weeks) were extracted and fixed in chilled 4%
paraformaldehyde for 10min prior to dissection into half
turns without decalcification. Cochlear pieces were
blocked for 2h at 4°C in 5% normal horse serum with
1% Triton X-100 and then incubated overnight at 4°C in
the primary antibodies (rabbit anti-GluR2/3 from Chem-
icon at 1:500 and mouse anti-CtBP2 from BD Transduc-
tion Labs at 1:200) diluted in 1% normal horse serum
with 1%Triton. Secondary antibody incubations followed:
the first, overnight at 4°C, included biotinylated donkey
anti-mouse (1:200, Jackson ImmunoResearch) plus fluo-
rescent-conjugated chicken anti-rabbit (AlexaFluor 488,
Invitrogen, 1:1,000): the second, for 1 h at room
temperature, included streptavidin-conjugated Alexa-
Fluor 568 (Invitrogen, 1:1,000) plus a goat anti-chicken
conjugated to AlexaFluor 488 (Invitrogen, 1:1,000).

RESULTS

Classifying and identifying the sources of synaptic
terminals in the OHC area

Many electron-microscopic studies described two major
types of synaptic terminals at the basal pole of OHCs:

large vesicle rich and small, vesicle poor (e.g., Thiers et
al. 2002b; Kimura and Wersall 1962; Hashimoto and
Kimura 1987). The large, vesicle-rich terminals are
typically opposite a membranous subsynaptic cistern in
the apposing OHC (Kimura and Wersall 1962) and
were assumed to be descending projections from the
OC system; correspondingly, most of these large
terminals disappear after cutting the OC bundle in
the brainstem (Iurato et al. 1978; Pujol and Carlier
1982; Liberman and Gao 1995). The small, vesicle-poor
terminals are occasionally apposed to vesicle-studded
synaptic ribbons within the OHC (Liberman et al.
1990) and were assumed to connect via peripheral
dendrites to the unmyelinated type-II spiral ganglion
cells, one of the two major classes of primary sensory
neurons in the cochlea (Kiang et al. 1982). The ap-
pearance of these two terminal types in the cat cochlea
is illustrated by the micrographs in Figure 2A.

Subsequent light-microscopic studies of peripheral
branching patterns, using whole-cell filling via neuronal
tracers such as HRP, showed that the large OC terminals
arise from radially directed terminal branchlets, which
cross the middle of the tunnel of Corti and immediately
give rise to a small cluster of five to ten endings on
neighboring OHCs in all three rows (Liberman and
Brown 1986; Brown 1987a). In contrast, the peripheral
dendrite of a type-II spiral ganglion cell crosses at the
floor of the tunnel and spirals towards the base of the
cochlea in the outer spiral bundles while slowly rising
towards the bases of the OHCs and ultimately giving
rise to small terminals contacting ten to 100 OHCs,
typically contacting cells from a single OHC row (Brown
1987b; Simmons and Liberman 1988a). As illustrated
in Figure 2B and C, these spiraling type-II dendrites
are plentiful in the region under the OHCs and are
particularly rich in neurotubules.

Identifying the sources of synaptic terminals is key to
the interpretation of data from the present study; thus,
we made careful measurements of size, vesicle content,
and dendritic origins of a large population of terminals
in a normal ear and then compared the results to that
seen in a cochlea with surgical transection of the OC
bundle in the brainstem. As shown in Figure 3, serial-
section reconstruction of a sample of 258 terminals
contacting 18 OHCs from all three rows in the 0.7-kHz
region of one cat reveals a clear dichotomy between a
population of small vesicle-poor terminals traceable to
spiraling parent fibers and a population of larger,
vesicle-rich terminals traceable to radially directed
branches. Furthermore, a semi-serial-section analysis
of OHCs from a similar frequency region in a surgically
de-efferented cochlea showed that literally all of the
large vesicle-rich population had disappeared. Micro-
graphs comparing similar regions from a normal and a
de-efferented ears are shown in Figure 4A and B, res-
pectively: A prior light-microscopic analysis of the

FIG. 1. Schematic illustrating the projections of type-II spiral
ganglion cells and medial olivocochlear (OC) neurons in the outer
hair cell (OHC) area of a typical mammalian ear, as well as the
section planes used for serial-section ultrastructural analysis.

THIERS ET AL.: Reciprocal Synapses on Outer Hair Cells 479

Anatomical embedding
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Frequency sensitivity in mammalian hearing from a fundamental nonlinear physics model of the
inner ear
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A dominant view holds that the outer and middle ear are the determining factors for the frequency dependence
of mammalian hearing sensitivity, but this view has been challenged. In the ensuing debate, there has been a
missing element regarding in what sense and to what degree the biophysics of the inner ear might contribute to
this frequency dependence. Here, we show that a simple model of the inner ear based on fundamental physical
principles, reproduces, alone, the experimentally observed frequency dependence of the hearing threshold. This
provides direct cochlea modeling support of the possibility that the inner ear could have a substantial role in
determining the frequency dependence of mammalian hearing.

Psychoacoustic and behavioral experiments [1, 2] exhibit a
marked frequency dependence of the mammalian hearing sen-
sitivity [3–6] (Fig. 1). Over more than a decade, the biophysi-
cal origins of this dependence have now remained a subject of
debate [3, 7–10], despite the great development of measure-
ment and modeling technologies. To compare directly psy-
choacoustic to biophysical results - which is what is generally
done and what we will do below - the auditory signal would
be required to remain unaltered along the auditory pathway.
This is far from obvious, but recently [11] it was shown that
the auditory pathway may achieve this property by making
substantial use of stochastic resonance in the auditory fibers.
Here, we show that the same mesoscopic nonlinear physics
model of the mammalian cochlea that has successfully repro-
duced other challenging hearing phenomena [12–16] might
also provide an explanation of the observed sensitivity depen-
dence on frequency.

Let us briefly summarize the key points of controversy un-
derlying this debate. One viewpoint emerges from following
the most straightforward way of approaching this question,
by conceiving the hearing sensor as composed of a resonator
(outer ear), an impedance matcher (middle ear), and a Fourier
analyzer of the auditory signal (inner ear), respectively (see
the references given in the corresponding discussion in Ref.
[3]). The outer ear is commonly modeled by a semi-closed
cylinder [17, 18] of about 30 mm. This leads to a resonance
in the range of 3 kHz as the first, and the second one at tripled
frequency; effects that are indeed observed in measured data
(cf. Figs. 1, 3). The modeling of the influence of the middle
ear in this process is more challenging, due to the presence of
additional, complicating mechanical and spatial elements (cf.
[19–21]). The hearing pathway overall response is then ob-
tained by performing a summation over the corresponding in-
dividual logarithmic responses. With the development of ex-
perimental techniques, this approach could be calibrated with
measured animal data. In this way, qualitative aspects of the
behavioral data (Fig. 1) could be reproduced for some mam-
mals (e.g. for human hearing [10, 22]), whereas for a number
of other mammals, the approach appears to have been unsuc-
cessful so far [3]. A deviant viewpoint emerges from a more
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FIG. 1: Behavioral audiograms of prairie dog [23], elephant [24],
lemur [25], domestic cat [26], human psychoacoustial hearing
threshold [4], white-beaked dolphin [27] (smoothened data), false
killer whale [28], from top to bottom, sorted by the curves’ minima.
The full extension of the audiogram was not accessed in all cases.
Reference sound pressure p0 = 20µPa.

recent analysis by Ruggero et al. [3], who re-evaluating mid-
dle ear transfer function data arrived at the result that a number
of animal middle ear transfer functions appear to cover a much
broader interval than their actual hearing frequency interval
(cf. the discussion and the corresponding Figs. in [3], and fur-
ther Refs. therein). This led these authors to conclude that the
inner ear could have “a crucial role in setting the frequency
limits..” but that “It remains to be seen whether the finding
that the bandwidth of middle-ear vibrations exceeds that of
the audiogram in chinchilla, gerbil, guinea pig, horseshoe bat,
pigeon, and turtle will be confirmed ..” [3]. A number of sub-
sequent biological measurements and finite element simula-
tions seem to support the lack of frequency specificity of the
outer and middle ear (e.g., [29, 30], and [31], respectively).
For the reader’s convenience, data underlying this view are
presented for the example of the Gerbil’s hearing system in
our Suppl. Mat. section I. These results have, however, been
challenged ([7], discussion in Ref. [30]), and the main role in

Behavioral audiograms (from top to bottom): 
  
Prairie dog [23], elephant [24], lemur [25], domestic cat [26],  
human psychoacoustial hearing threshold [4],  
white-beaked dolphin [27], false killer whale [28]. 

Dogma : Frequency dependence of the  
hearing threshold is exclusively determined by 
outer and middle ear

VI Hearing threshold



Animal evidence 

Supplemental materials to ”Frequency sensitivity in mammalian hearing from a fundamental
nonlinear physics model of the inner ear”, by Kanders, K., Lorimer, T., Gomez, F. & Stoop, R.

I: MONGOLIAN GERBIL FREQUENCY HEARING
CHARACTERISTICS
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FIG. 1: Outer-middle ear transfer functions of the Mongolian ger-
bil that serves in a wide range as a model of mammalian hearing.
Dashed: Behavioral hearing threshold [1]. Curves normalized to the
corresponding measurement values at 4 kHz. Blue: Pressure in scala
vestibuli near stapes footplate PS V [2]. Red: Stapes velocity V [3].
Original data read off from the original publications and put together
by the present authors.

Fig. 1 collects some of the data (for the example of the
Mongolian Gerbil) [4], that let Ruggero et al. and colleagues
conclude that the inner ear could have a more substantial role
in shaping the frequency sensitivity of the mammalian hearing
system. A number of newer biological measurements and fi-
nite element simulations seem to support the lack of frequency
specificity of the outer and middle ear (e.g., [5, 6], and [7], re-
spectively). For the reader’s convenience, data underlying this
view are presented for the example of the Gerbil’s hearing sys-
tem.

II: METHODS

Over varying species-specific frequency intervals, mammalian

hearing is able to access a huge dynamic range of sound (between

120-130 dB). This is due to the ability of the cochlea’s outer hair

cells to generate nonlinear amplification of the signal, leading to

strong amplification of weaker sounds and weaker amplification of

stronger sounds [11]. Outer hair cells follow in physical space and in

frequency space (connected by the tonotopic map) a largely scaled

building plan [24]. The mammalian hearing sensor, the cochlea,

can therefore be described at several levels. The finest one is the

level of the outer hair cells, focusing on explaining the intriguing in-

teraction between hair bundle mechanics and electromotility of the

hair cell bodies. On a more mesoscopic level, the cochlea’s build-

ing plan can be captured in terms of so-called Hopf amplifier sys-

tems (e.g. [24]) that are composed as a sequence of mesoscopic

sections representing discretization parts of the cochlea towards the

Hopf cochlea (e.g. [25]). The device reflects the biophysics, in-

cluding hair cell, basilar membrane, and fluid properties of the real

cochlea in one model, to such an extent that all salient measured

properties in biology could be verified in corresponding simulations.

The composition of such sections into a macroscopic model of the

sensor [9, 13, 19] is based on the detailed biophysics and nonlin-

ear dynamics at work in the cochlea [26, 27]. Fundamental for this

model is that the sections share the dynamical properties of the mi-

croscopic amplification-providing outer hair cells [27, 28], which are

well-modeled by a stimulated Hopf process

ż = ωch((µ + i)z − |z|2z − F(t)); z, F(t) ∈ C,

where z(t) denotes the response amplitude, F(t) a stimulation signal,

ωch is the characteristic frequency of the Hopf system, and µ is the

Hopf parameter [26, 27, 29–31]. At values µ < 0, the system is

below bifurcation to self-oscillation, but responds towards stimula-

tion signals F(t) as a small-signal amplifier [32–34]. Dissipation

by fluidal viscous losses can be described by tailored 6th-order

Butterworth low-pass filters [13, 25]. The main characteristics

of the isolated node dynamics are collected in Ref. [31]. When

embedded into a compound cochlea, the response profiles broaden

due to the sections’ interaction with neighboring ones, reproducing

the biological data [8] extremely well [25]. The distance of µ

from bifurcation at µ = 0 defines how strongly a node amplifies

an incoming signal; we choose this parameter to match the human

hearing sensor. The biophysical properties of the cochlea suggest

selecting the characteristic frequencies of the nodes according to a

geometric sequence. We use a software implementation of an earlier

hardware realization of 29 sections or nodes, taking care of 7 octaves

(14.08 − 0.11 kHz), or a 31-section model covering an interval of

(19.912 − 0.11) kHz. Our partition is optimal in the sense that

finer partitions yield for the human amplification range, identical

results, but coarser partitions lead to distortions in the frequency

dependence, if sufficiently strong amplification is required. For

’flat tuning’, µ ≡ const, all nodes have identical Hopf parameters

(conventionally µ ≡ −0.25) [31], unless we provide them with a soft

continued gradual amplification decay towards lower frequencies,

to optimally match the human hearing system, or if we tune them

actively (mimicking the effect of efferent cochlear connections) in

the context of learning [19]. In the latter case, we condition the

network towards chosen sounds by tuning unsuited nodes towards

weaker amplification. A detailed account on the design of the used

cochlea is provided in the supplements of Ref. [31].

Ruggero and Temchin 2002

Outer-middle ear transfer functions Mongolian gerbil 
  
Dashed: Behavioral hearing threshold  
Blue: Pressure in scala vestibuli near stapes footplate  
Red: Stapes velocity
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fch = 110…14080 Hz 
μ(j) is the same for all sections: 
μ(j) = -0.40!
μ(j) = -0.35!
μ(j) = -0.30!
μ(j) = -0.25!
μ(j) = -0.20

Could it be the cochlea? 
flat-tuned cochlea: 

1. Response of section j is defined as Rj= 20 log10[(max(Re(outj))] 
2. The maximal response of Hopf cochlea is Rmax = max({Rj : j = 1,2,…,N}) 
3. Hearing threshold of a pure tone stimulus F(t) = A exp(-i 2 π f t) : defined as the input level  

L = 20 log10[A] that gives rise to Rmax ≃ -50 dB 
4. 0 dB SPL input in experiments corresponds to -114 dB input to Hopf cochlea

flat tunings: µ(j) = constant

F.G., K.K., T.L. & R.S. submitted
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Tuning of amplifiers 

contradiction to schoolbook 
wisdom ..

μ(j)  detuning as in Smoorenburg

resonance middle/outer ear: <10 dB, 
around 4000 Hz (Shaw 1974):  
Perfect agreement

no data available
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> -10 dB
-20 < ..< -10 dB
-30 < ..< -20 dB

-40 < ..< -30 dB
-50 < ..< -40 dB
< -50 dB

section

b)a)

output levels:

1 10 20 29 section1 10 20 29
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a) two pure tones input (3/8, 1/2 kHz)  ! ! ! !   b) two complex tones (2, 3.35 kHz, with 5 harmonics each)  !
!
Cochlea: 29 sections, covering (0.11, 14.08) kHz on a logarithmical scale;    =-0.25 at all sections; input: -60 dB each tone.  
Upper: Activated networks (=‘above hearing threshold’), lower: corresponding activations on the unrolled cochlea.

µ

VII Activation networks are the signal..

(R.S. & F.G. PRL 2016)
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P(s) ~ s - 1.5

b)
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~ s - 1.5 -50 dB

 -60 dB
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0.1

0.001

0.0001
s 400100

!
Inset: fixed amplitudes:!
subcritical, critical, supercritical

Two complex tones (random amplitude and frequency):   s: size of activation network by number of links

VIII Hearing @ criticality?

power-law activation networks!

(R.S. & F.G. PRL 2016)
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Detuning of two frequency bands (nodes 15,16 and nodes 19,20,21) from μ = −0.25 to μ = −2.0: 
The initial power-law distribution s−1.5 changes into a strictly convex distribution shape (line L)!

P(s)

0.01

30 100 400
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Statistical meaning of learning
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IX When is a sound perceived harmonic?

8 background

tifiable measure, most evaluations are based on an arbitrary scale and
are thus intrinsically subject to variations.

Despite those drawbacks, a common trend is found among psy-
choacoustic studies: although variations exists, the overall assessment
curves are found to be remarkably similar across ages and cultures
(Bowling and Purves, 2015).

There are two main opposing sides on the origin of consonance per-
ception. They rest on whether it is an innate preference humans have,
or an inclination towards which we are trained by exposure. Such a
distinction is hard to make, since it is nontrivial to pinpoint and quan-
tify a person’s exposure to external sound stimuli. Yet attention based
studies carried out on infants argue for a predisposition to consonant
intervals (Schellenberg and Trehub, 1996; Trehub, 2001), pointing in
the direction of a biological basis.

Although ethnomusicologists seem to disagree on the topic, stud-
ies show that no significant difference is present in the consonance
judgments of people with different cultural backgrounds. To make
the picture clearer, in figure 2.2a we show an example of some col-
lected results for consonance rankings. The data correspond to cross-
cultural studies carried out in the years between 1898 and 2012 (Bowl-
ing, 2012; Butler and Daston, 1968; Guernsey, 1928; Malmberg, 1918).
We observe that, diversity the culture and the expected variability, an
overall agreeable trend emerges in the rated consonance of intervals.

plucked string arise from different vibrational
modes and that their frequencies are neces-
sarily integer multiples of the fundamental
(Fig. 2). By the early 19th century, further
contributions from Bernoulli, Euler, Jean le
Rond d’Alembert, and Joseph Fourier had
provided a complete description of this
“harmonic series,” which arises not only from
strings, but also from air columns and other
physical systems (14).
The ratios among harmonic overtones also

drew the attention of the 18th century French
music theorist and composer Jean-Philippe
Rameau, who used their correspondence to
musical intervals to conclude that the har-
monic series was the foundation of musical
harmony (14). He asserted that all physical
objects capable of producing tonal sounds
generate harmonic vibrations, the most
prominent being the octave, perfect fifth, and
major third. For Rameau, this conclusion
justified the appeal of the major triad and
made consonance a direct consequence of
musical ratios naturally present in tones.
Dissonance, on the other hand, occurred
when intervals did not easily fit into this
harmonic structure (2, 14).
Despite these earlier insights, the major

contributor to modern physical theories of
consonance and dissonance was the 19th
century polymath Hermann von Helmholtz,
whose ideas are still regarded by many as the
most promising approach to understanding
these phenomena (15). Helmholtz credited
Rameau and d’Alembert with the concept of
the harmonic series as critical to music but
bridled at the idea that a tone combination
is consonant because it is natural, arguing

that “in nature we find not only beauty but
ugliness. . . proof that anything is natural
does not suffice to justify it esthetically” (ref.
16, p. 232). He proposed instead that con-
sonance arises from the absence of “jarring”
amplitude fluctuations that can be heard in
some tone combinations but not others. The
basis for this auditory “roughness” is the
physical interaction of sound waves with
similar frequencies, whose combination gives
rise to alternating periods of constructive and
destructive interference (Fig. 3). Helmholtz
took these fluctuations in amplitude to be
inherently unpleasant, suggesting that “in-
termittent excitation” of auditory nerve fibers
prevents “habituation.” He devised an algo-
rithm for estimating the expected roughness

of two-tone chords and showed that the
combinations perceived as relatively consonant
indeed exhibited little or no roughness,
whereas those perceived as dissonant had
relatively more. Helmholtz concluded that
auditory roughness is the “true and suffi-
cient cause of consonance and dissonance
in music” (ref. 16, p. 227).
Studies based on more definitive physio-

logical and psychophysical data in the 20th
century generally supported Helmholtz’s
interpretation. Georg von Békésy’s map-
ping of physical vibrations along the basilar
membrane in response to sine tones made it
possible to compare responses of the inner
ear with the results of psychoacoustical
studies (17, 18). This comparison gave rise
to the idea of “critical bands,” regions ∼1 mm
in length along the basilar membrane within
which the inner ear integrates frequency in-
formation (19–21). Greenwood (18) related
critical bands to auditory roughness by
comparing estimates of their bandwidth to
the psychophysics of roughness perception
(22). The result suggested that tones falling
within the same critical band are per-
ceived as rough whereas tones falling in dif-
ferent critical bands are not (see also ref. 23).
A link was thus forged between Helmholtz’s
conception of dissonance and modern
sensory physiology, and the phrase “sensory
dissonance” was coined to describe this
synthesis (24–26). The fact that perceived
roughness tracked physical interactions on
the basilar membrane was taken as support
for Helmholtz’s theory.
Despite these further observations, prob-

lems with this physical theory were also ap-
parent. One concern is that perceptions of
consonance and dissonance persist when the
tones of a chord are presented independently

Fig. 1. The relative consonance of musical intervals. (A) The equal tempered chromatic scale used in modern
Western and much other music around the world. Each interval is defined by the ratio between a tone’s fundamental
frequency and that of the lowest (tonic) tone in the scale. In equal temperament, small adjustments to these ratios
ensure that every pair of adjacent tones is separated by 100 cents (a logarithmic measure of frequency). (B) The
relative consonance assigned by listeners to each of the 12 chromatic intervals played as two-tone chords. The filled
black circles and dashed line show the median rank for each interval; colored circles represent data from ref. 5; open
circles from ref. 6; crosses from ref. 7; open squares from ref. 8. These data were collected between 1898 and 2012, in
Germany, Austria, the United Kingdom, the United States, Japan, and Singapore.

Fig. 2. The harmonic series generated by a vibrating string. (A) Diagram of the first 10 vibrational modes of a string
stretched between fixed points. (B) A spectrogram of the frequencies produced by a vibrating string with a funda-
mental frequency of 100 Hz. Each of the dark horizontal lines is generated by one of the vibrational modes in A. The
first mode gives rise to the fundamental at 100 Hz, the second mode to the component at 200 Hz, the third mode to
the component at 300 Hz, etc. These component vibrations are called harmonics, overtones, or partials and their
frequencies are integer multiples of the fundamental frequency. Note that many ratios between harmonic frequencies
correspond to ratios used to define musical intervals (cf. Fig. 1A).

11156 | www.pnas.org/cgi/doi/10.1073/pnas.1505768112 Bowling and Purves
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Figure 2.2: Psychoacoustically assigned consonance/dissonance to each of
the 12 chromatic intervals of the western scale. Although the subjects have
different cultural backgrounds (Germany, Austria, UK, US, Japan, Singa-
pore), the overall profile is consistent across studies. 2.2a: Colored circles
after Malmberg, (1918), open circles after Guernsey, (1928), crosses after
Butler and Daston, (1968), squares after Bowling, (2012). Median of rank-
ings indicated by the dashed line. Figure after Bowling and Purves, (2015).
2.2b:Replotted data of fig. 2.2a as a function of ascending interval width.
Additional curve after Vassilakis, (2001).Data are plotted on a dissonance
evaluation scale.

Dissonance vs. interval length:  
Not cultural, but strong experimental variations	
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Short history of consonance and dissonance:	
!

Pythagoras (6th century BC):  
Strings of simple length ratios elicit sensations of pleasantness (“consonance”).  
Intervals of the octave (2:1), the perfect fifth (3:2) and the perfect fourth (4:3) provide 
the Pythagorean tuning. 	
Geoseffo Zarlino (renaissance music theorist):  
Added the intervals of the major third (5:4), minor third (6:5) and major sixth (5:3) to 
the consonance set.	
Daniel Bernoulli: Superposition of infinite harmonic vibrations on a vibrating string;  
Marin Mersenne, Leonhard Euler and Joseph Fourier: Concept of a “harmonic series”.	

!
Professionals vs. amateurs:  Identically perceived 

Pure tones vs, complex tones: Distinctly perceived
Network property?
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6.2 complex tones 55

(a) unison (b) minor 2nd (c) major 2nd (d) minor 3rd (e) major 3rd

(f) perfect 4th (g) augm. 4th (h) perfect 5th (i) minor 6th (j) major 6th

(k) minor 7th (l) major 7th (m) perfect 8th

Figure 6.20: Network representation of the 40-section biologically tuned
cochlea. Octave base frequency of 120 Hz. The elongation of the cochlea
offers more range for the network to expand. The SLM can now overcome
the restriction imposed by the 31-section cochlea (fig. 6.19) and assign more
precise dissonance values to the intervals.

Although the SLM is able to capture the salient characteristics of
the psychoacoustic curves, there seems to be margin for improvement.
Contrary to the pure-tone input, in which it showed significant effi-
ciency, the conformance to the complex-tone reference curves is not
as good. As the input in this case is much is more complex, we inves-
tigate whether the WLM can generate a better result.

6.2.4 WLM performance on complex-tone input

Following the same procedure as in the SLM study, we test our 480

Hz input (Table 6.2) on the WLM. The network output is shown in its
normalised form in figure 6.21, with the SLM output as reference.

Although qualitatively very similar, a first distinction can be made
between the two halves of the curve: the WLM output exactly follows
the trend of the SLM (reference curve) for intervals more than 6 semi-
tones apart. The first half of the curve however significantly deviates.
The closer the input tones are, the more low frequency interaction
terms are expected to arise due to the adjacent harmonics. Hence,
the dissimilarity of the methods is, as expected, more obvious in this
range.

The absolute amplitude is higher in the case of the WLM, since it
collectively counts the number of the individual interactions rather

Network picture 

 
Network-based measures of dissonance:	

	 .	    •	 Topological graph: Network size of active nodes (SLM)  	     

	  •	 Weighted graph (WLM)          

Higher dissonance <—> 	

larger activated network size, 	

larger edge density
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Network measure vs. psychoacoustics: 
!
!

56 results
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Figure 6.21: SLM vs WLM output for the 31- section cochlea. Octave base
tone of 480 Hz. Both curves follow the same trend in qualitative agreement
with psychoacoustics. The WLM is found to better differentiate between the
dissonance ratings of the minor 2nd and minor 7th, an attribute also observed
in the psychoacoustic curves (fig. 6.12).

than the single section connections (fig. A.13). The first part of the
curve becomes smoother, assigning progressively lower dissonance
ratings to the intervals between 1 and 5 semitones apart. Although
the WLM assigns higher ratings to the intervals of the minor second
and augmented fourth, their relative height still remains same. This
changes in the case of the minor second and minor seventh (1 semi-
tone and 10 semitones apart). Here the WLM assigns a lower rating to
the interval of the seventh which is not seen in the SLM on the same
cochlear length (setting A). As mentioned before, this difference is
also seen in the psychoacoustic data despite their general ambiguity
and was replicated by the SLM on the elongated cochlea as well.

It is further noted that the WLM output for the 31-section cochlea
yields results qualitatively very similar to the respective SLM output
of the elongated one (fig.6.22).

6.2.5 WLM performance on the elongated cochlea

We next test the WLM on the elongated cochlea. In figure 6.23 we com-
pare the normalised output of the network across the two different
lengths of the cochlea (31 sections and 40 sections).

Elongating the cochlea towards the hearing threshold does not
show a qualitative effect in the case of the WLM. Naturally, the elon-
gated case yields higher peaks when the absolute dissonance values
are considered, (fig. A.14). Yet the relative dissonance ranking is al-
most identically maintained. Given that the hearing threshold rises

Not perfect, but a good match!

experiment model
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• perfect restitution of human hearing 
• new generations of technical sound sensors 
• dealing efficiently and coping with ‘big data’  

!

!

Perspectives of this approach: 
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Fundamental human perception ‘reduced’  
to cochlear physics and network theory  
!

: Physics / engineering approach 
brings us closer towards the “human mind”

thanks for listening..
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Tuning :
models of pitch perception suggest comparison:

SACF: sum of normalized autocorrelations of each section’s
output 
vs.
NACF: normalized autocorrelation of the target signal 
desired signal x / unwanted signal y / fi  output of i-th section

TE in [0,infinity]: 
high  (>>1) TE: bad tuning, low  (<1): (very) good tuning

:TE-optimization problem in multidimensional +-space

E

Measuring listening efficacy
(F.G, V.S., N.B., R.S., Phys. Rev. Appl. 2014)
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Tuning patterns: red: close to bifurcation,!
blue: away from bifurcation.!
red: close to bifurcation,!
!
a) left: sweeping “Reel” target!
right: sweeping “Flute” target !
(tuning towards “Reel” requests!
enhancement of the 3rd and 5th harmonics!
(two parallel reddish stripes)

Results :
two complex instruments: 
‘Flute’ vs.‘Zinke’(both parts of church organs)

TE

TE consistently < 1:
strong target enhancement
Black: flat tuning; red: TE-tuning

(F.G, V.S., N.B., R.S., Phys. Rev. Appl. 2014)

tuned away
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Using pitch as guiding control feature:  

original: flute and reel

disturber (flute) and 
crossproducts removed;	
harmonic series restored 

: efficient biomorphic tool for source separation!

(F.G.,V.S.,N.B., R.S.. Phys. Rev.  Appl. 2014)
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Hearing  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Verrillo et al. (1969)

Verrillo, R.T., Fraioli, A., and Smith, R.L. Sensory magnitude of vibrotactile stimuli. Percept.
Psychophys. 6: 366–372, 1969..

Fletcher-Munson Curves
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Tuning :
models of pitch perception suggest comparison:

SACF: sum of normalized autocorrelations of each section’s
output 
vs.
NACF: normalized autocorrelation of the target signal 
desired signal x / unwanted signal y / fi  output of i-th section

TE in [0,infinity]: 
high  (>>1) TE: bad tuning, low  (<1): (very) good tuning

:TE-optimization problem in multidimensional +-space

E

Measuring listening efficacy
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