New results from the sensor human brain project alternative

Ruedi Stoop, Albert Kern, Jan-Jan van der Vyver, Stefan Martignoli, Florian Gomez, Tom Lorimer, Karlis Kanders, Karolina Ignatiadis

Institute of Neuroinformatics UNI / ETH of Zurich

Focus of the century: Understanding the brain

• Human brain project:

Aims at accomplishing the goal by re-building the brain physiology (reminds me of Chomsky's critique regarding understanding the nature of language!)

Old results that made us look for an alternative approach...

Starting 1996 @ ini UZH/ETHZ: Experiments on rat somatosensory neurons

'NEURONS ARE (JUST) OSCILLATORS' (E. Moses, Madrid 2018)

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

(c)

g

1

 $\phi_2 = \phi_1 + \Omega - g(\phi_1)$

ø

0.6

0

¢

mod(1)

(b)

g

1.6

1

0

50 [m<] -50 -100 0 _____] 2500 1000 500 1500 2000 [ms]

Numerical explorations:

Comparison experiment-simulation:

(c)

Interacting neuron pairs (1998):

1-d chain of diffusively coupled (binary) interaction maps:

- Stoop R, Schindler K, Bunimovich LA (1999) Inhibitory connections enhance pattern recurrence in networks of neocortical pyramidal cells. Phys Lett A 258: 115–122
- Stoop R, Schindler K, Bunimovich LA (2000a) When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize. Neurosci Res 36: 81–91
- Stoop R, Schindler K, Bunimovich LA (2000b) Noise-driven neocortical interaction: complex neuron spiking uncovered by nonlinear dynamics. Acta Biotheor 48: 149–171

 $\phi\{i,j\}(t_{n+1}) := (1 - k_2 k\{i,j\}) f_{K\Omega}(\phi\{i,j\}(t_n))$ $+ k_2/nn \ k\{i,j\} \sum_{nn} \phi\{k,l\}(t_n)$

Interacting neuron pairs (1998, RS, LAB, WHS):

1-d chain of diffusively coupled (binary) tent-map (slope a) interaction maps:

Phase-coincidence learning $k\{i, j\}(t_{n+1}) := k\{i, j\}(t_n)(\operatorname{Tanh}[r] + 1)/2$ (binary) tent-map (slope a) interaction maps (r=sum of absolute inverse phase differences)

Fig. 8. a Phase differences evoked by two distinct input patterns (2-d network, evolution under phase-coincidence detection). In the *red area*, no changes are observed. The *bottom layer* (= input layer) shows the differences in the input patterns. Due to two-torus periodic boundary conditions, this also affects the top layer. Coding sites are the islands within the red sea. At these sites, prominent phase changes are observed. **b** Corresponding figure when excitatory phase return maps have extended refractory periods. A visibly increased "penetration depth" of coding sites indicates increased degree of synchronization. **c** Temporal phase difference evolution, at a coding site from (**a**). Three input signals were compared (constant random phase layer l_1 , constant layer l_2 with phase 0.2, constant layer l_3 with phase 0.6). Absolute phase differences are shown of, *top curve*: $l_1 - l_2$, *medium curve*: $l_1 - l_3$, *bottom curve*: $l_2 - l_3$

Next level: What's in cortical columns?

Log-density of photostimulation—evoked excitatory (a) and inhibitory (b) synaptic inputs (concentric rings 50 μ m apart, from 19 pooled layer 2/3 neurons). (I): Inner-columnar, (II): Intercolumnar scale. Vertical lines: Extensions of aligned physiological columns. Tilted dashed lines: Proposed long distance decay.

B. Roerig and B. Chen, Cereb. Cortex 12, 187 (2002).

double power-law!

Testing the 'canonical microcircuit' dogma

(I) (a) EI model, (b) EI-control network (uniform synaptic weights w, $\lambda = 2$). p_{con} : probability of a synaptic connection among neurons of distance d for C values as in the text, w: synaptic strength of the connections. (II) (a) LEI-model, (b) LEI-control network. Input strengths to populations are color coded.

'reservoir computing'

Columnar wiring does not matter, except for...

Recognition rate *R* for (a) Arabic Digit, and (b) Auslan recognition. Each data point represents an average over at least 20 experiments following a normal-like distribution each [cf. Supplemental Material Sec. (1b) [10]]. Blue: leaky integrate and fire, red: Izhikevich neurons. Left column: memoryless (ml), right column: integration (int) readout. (I) *EI* network, dependence on rewiring parameter λ (control networks: dashed curves), and on ratio *I* of input receiving neurons, at local connectivity (i.e., $\lambda = 2$). Ocher: Izhikevich neurons with $\lambda = 0$. (II) *LEI* networks, dependence on rewiring probability *p*. *p* = 0: layered, *p* = 1: homogeneous control network.

Main connectivity classes compared (p: connection probabilities, d: distance, M: cutoff, see text).

Left: SIT as a function of cell connections k. From top: doubly fractal ($\theta = 0.2$, $\alpha = 0.5$, $\beta = 2.0$), fractal ($\theta = 1$, $\alpha = 0.7$), random, n.-n. topology. Network sizes: N = 4096, averages over 100 experiments. Right: Connections k_{\min} required for synchronization, and associated TWL. N = 512, 10 experiments.

R.S et al PRL 2014

41 H1 11 11 11 10 001

Follow the money... Change of approach: 'explain the brain'!

- > follow the information flow

Hearing system properties:

- Ancestral to the nervous system (hope: explain aspects of the brain from the sensors' perspective)
- Verifiable ('big' unexplained data)
- Simple fundamental physics-based model
- Powerful if embedded into physiological context
- Explains a number of puzzling observations

Overview:

- 1995: Wiesenfeld: Small signal amplifiers, PRL
- 1999: Start: Kern-Stoop cochlea, from scratch, based on fluid dynamics, energy-based approach
- 2000: Eguiluz, PRL: Hopf concept
- 2002 Kern's thesis finished
- 2003: Kern & Stoop, PRL
- 2003: Comment to Magnasco's PRL
- 2004: Stoop & Kern, PRL, PNAS
- 2004: Efferent tuning, submitted to SNF
- 2005: Coupling reconsidered, v.d.Vyver
- 2005: Hardware cochlea, v.d.Vyver
- 2006: v.d.Vyver's thesis, ETHZ
- 2006: US Patent filed
- 2006: Insect hearing: Hopf in Drosophila antenna
- 2008: Cochlear re-mapping
- 2010: Local correlations of the perceived pitch, PRL
- 2011: Effect of Nuclei, NECO
- 2013: Pitch sensation involves stochastic resonance, Sci. Rep.
- 2014: Efferent tuning implements listening, Phys. Rev. Appl.
- 2014: Pitch sensation shaped by cochlear fluid, Nat. Phys.
- 2016: Signal-coupled subthreshold Hopf-type systems show sharpened collective response, PRL
- 2016: Auditory power-law activation avalanches exhibit a fundamental computational ground state, PRL
- 2017: Mammalian hearing threshold explained, Sci. Rep.
- 2018: "Harmony" perception explained from network principles

Q: What do we hear and why?

1840: Berlin vs. Dresden

Ohm

Seebeck

What is the physical description of 'pitch' sensation?

"Wodurch kann über die Frage, was zu einem Tone gehöre, entschieden werden, als eben durch das Ohr?" (How else can the question as to what makes out a tone, be decided but by the ear?)

August Seebeck 1844

Mammalian cochlea more than a frequency analyzer..

UNRIBINION OF

Experiments

- simple tone: A*sin(2*π*fo*t)
- complex tone:
 (frequency components
 fo, 2fo, 3fo, ...)
- missing fundamental

simple

complex

• Smoorenburg's two-tone experiments:

pitch down (250 -> 200 Hz, fundamental), or pitch up ?

I Key for understanding hearing: nonlinear 'small signal amplifier'

Wiesenfeld et al. PRL 1984/5/6:

Systems close to a **period-doubling bifurcation** can be used as a small signal amplifier:

Signals with a certain 'critical' frequency are strongly amplified.

Andronov-Hopf: Brun at al., PRL 1985

A) 638343600

Biological evidence of Hopf small signal amplifiers

Dynamics above bifurcation demonstrate the Hopf property

 $\ddot{x} + P_n(x)\dot{x} + P_m(x) = 0$ $\ddot{x} - \mu(1 - x^2)\dot{x} + x = 0$ Generalized van der Pol oscillator $\mu = 0$: A.-Hopf bifurcation

P'm(x), restoring force, negative stiffness (P'm(x)<0: active amplification)

R.S. et al, Eur. Biophys. J. 2006 T.L., F.G. & R.S. Sci. Rep. 2015

Active response R from a forced Hopf s (F: forcing)

- Close to bifurcation point and resonance:
- Before bifurcation point, small F:
- Charakteristic of Hopf-bifurcation

wc =1000 Hz,
$$\mu$$
 = -20, governs G
F = {0.004 10ⁱ, i=0..7}

(Eguiluz et al. PRL 2000)

$$R = F^{1/3}$$

$$R = -F/\mu$$

II From many sensors to a cochlea: the wiring problem

Hudspeth 2013

UNRIHIBITION CONT

Generic properties: Individual vs. signal-coupled Hopf elements

BM-stiffness $\longrightarrow \mu$

A.K. PhD thesis ETHZ 2003

F.G, T.L. & R.S. PRL 2016

no coupling

signal-coupling: signal sharpening !

IV Active elements - fluid coupling: Computational simplification

Vyver, Martignoli., R. S. Appl. Phys. Lett. 2008;

US-Patent 2007-2012

'Hopf cochlea'

Hopf fluid $Re(out_{j-1})$ $Im(out_{j-1})$ u(j) u(j)u(j)

Martignoli, van der Vyver et al. *Appl Phys Lett*, 2007 Martignoli and Stoop *Phys Rev Lett*, 2010 Gomez and Stoop *Nat Phys*, 2014 Stoop and Gomez *Phys Rev Lett*, 2016

Nonlinear phenomena explained:

Phase propagation along cochlea

Combination tones

.. and many more, e.g.

Medial olivocochlear efferent stimulation properties

V Nonlinearity magic simple signals: complex networks!

AM sound (fcar = 850, fmod = 200 Hz)

UNRIBUSIONS

Na walka Bana

(pitch is physical: S.M. & R.S. PRL 2010)

Combination tone saliency:

F.G. & R.S.,, Nat. Phys. 2014

16

Cochlear excitation for a complex two-tone stimulation (simulated) :

Black: signal power of frequencies f_2 and of f_1 **Red**: sum of lower CT ($f < f_1$) **Black**: added signal power from frequencies f_1 and f_2 **Red**: signal power of lower CT **Blue**: signal power of higher CT ($f > f_2$) relative to total signal power.

Combination tones:

100

40 dB SPL

experiment

- 65 dB -20 $A_{\text{output}}[dB]$ -40 12 dB/∆f 8.5 dB/Δf -60 -80 -100 1400 Frequency [Hz] 2400 - 75 dB -20 -40 A_{output} [dB] -60 18 dB/Δf 22 dB/∆f -80

Frequency [Hz]

2400

-100

1400

Place of measurement on the tonotopic map and choice of Hopf-cochlea section comparable (roughly one octave from cochlear base).

F.G. & R.S.,, Nat. Phys. 2014

Where is pitch read off ? Smoorenburg: Perceived pitch = Residual pitch at hearing threshold

enössische Technische Hochschule Zürich

wiss Federal Institute of Technology Zurich

F.G. & R.S., Nat. Phys. 2014

Second pitch shift effect

Two-frequency stimulation f_1 and $f_2 = f_1 + 200$ Hz, cochlea output at $f_c = 622$ Hz (second pitch shift effect): psychoacoustic data (crosses), measured data (full dots)

Inset: ISI-histogram for $f_1 = 900$ Hz, showing fp for k = 4 (left peak, for the rightmost cross) and for k = 5 (right peak, cross at $f_p < 178$ Hz)

Inset: ISI-histogram end of auditory nerve (S.M., F.G. & R.S. Sci. Rep. 2015)

Second pitch shift:

red: psychophysical experiments; black: model

Two-frequency stimuli with $f_2 = f_1 + 200$ Hz.

A D H T H T H T H T H T H T H T H

Red: Psychoacoustic data (partial amplitudes 40 dB SPL)
Black: Hopf cochlea simulation (7th section with fch = 1245 Hz, partial amplitudes -63 dB).
Solid lines: classical predictions of the perceived pitch.

: solves Ohm-Seebeck dispute !

second pitch shift due to cochlear fluid: F.G. & R.S. Nat. Phys. 2014, requested slight 'tuning' of the Hopf amplifiers (no-flat tuning of Hopf parameters)

Anatomical embedding

VI Hearing threshold

Animal evidence (nonspecialists)

Dogma : Frequency dependence of the hearing threshold is exclusively determined by outer and middle ear

Behavioral audiograms (from top to bottom):

Prairie dog [23], elephant [24], lemur [25], domestic cat [26], human psychoacoustial hearing threshold [4], white-beaked dolphin [27], false killer whale [28].

Animal evidence

Outer-middle ear transfer functions Mongolian gerbil

Dashed: Behavioral hearing threshold Blue: Pressure in scala vestibuli near stapes footplate Red: Stapes velocity

Ruggero and Temchin 2002

Could it be the cochlea? flat-tuned cochlea:

F.G., K.K., T.L. & R.S. submitted

- 1. Response of section j is defined as $R_j = 20 \log_{10}[(max(Re(out_j)))]$
- 2. The maximal response of Hopf cochlea is $R_{max} = max(\{R_j : j = 1, 2, ..., N\})$
- 3. Hearing threshold of a pure tone stimulus $F(t) = Aexp(-i2\pi ft)$: defined as the input level
 - $L = 20 \log_{10}[A]$ that gives rise to $R_{max} \approx -50 \text{ dB}$
- 4. 0 dB SPL input in experiments corresponds to -114 dB input to Hopf cochlea

Tuning of amplifiers

VII Activation networks are the signal..

a) two pure tones input (3/8, 1/2 kHz)

b) two complex tones (2, 3.35 kHz, with 5 harmonics each)

Cochlea: 29 sections, covering (0.11, 14.08) kHz on a logarithmical scale; μ =-0.25 at all sections; input: -60 dB each tone. Upper: Activated networks (='above hearing threshold'), lower: corresponding activations on the unrolled cochlea.

(R.S. & F.G. PRL 2016)

VIII Hearing @ criticality?

Two complex tones (random amplitude and frequency): s: size of activation network by number of links

(R.S. & F.G. PRL 2016)

an walls an war

Statistical meaning of learning

Detuning of two frequency bands (nodes 15,16 and nodes 19,20,21) from $\mu = -0.25$ to $\mu = -2.0$: The initial power-law distribution s^{-1.5} changes into a strictly convex distribution shape (line L)!

IX When is a sound perceived harmonic?

Dissonance vs. interval length: Not cultural, but strong experimental variations

Short history of consonance and dissonance:

Pythagoras (6th century BC): Strings of simple length ratios elicit sensations of pleasantness ("consonance"). Intervals of the octave (2:1), the perfect fifth (3:2) and the perfect fourth (4:3) provide the Pythagorean tuning.

Geoseffo Zarlino (renaissance music theorist): Added the intervals of the major third (5:4), minor third (6:5) and major sixth (5:3) to the consonance set.

Daniel Bernoulli: Superposition of infinite harmonic vibrations on a vibrating string; Marin Mersenne, Leonhard Euler and Joseph Fourier: Concept of a "harmonic series".

Professionals vs. amateurs: Identically perceivedPure tones vs, complex tones: Distinctly perceived

Network property?

Network picture

Higher dissonance <---> larger activated network size, larger edge density

an walls an war

Network-based measures of dissonance:

- Topological graph: Network size of active nodes (SLM)
- Weighted graph (WLM)

Network measure vs. psychoacoustics:

experiment

4141134100m

Not perfect, but a good match!

Perspectives of this approach:

perfect restitution of human hearing new generations of technical sound sensors dealing efficiently and coping with 'big data'

Fundamental human perception 'reduced' to cochlear physics and network theory

: Physics / engineering approach brings us closer towards the "human mind"

thanks for listening..

Measuring listening efficacy

(F.G, V.S., N.B., R.S., Phys. Rev. Appl. 2014)

models of pitch perception suggest comparison:

- SACF: sum of normalized autocorrelations of each section's output vs.
- NACF: normalized autocorrelation of the target signal desired signal x / unwanted signal y / fi output of i-th section

 $TE(x,y) := \frac{||\text{NACF}(x) - \sum_{i} \text{NACF}(f_i(x+y))/N||_2}{||\text{NACF}(y) - \sum_{i} \text{NACF}(f_i(x+y))/N||_2}$

TE in [0,infinity]:
 high (>>1) TE: bad tuning, low (<1): (very) good tuning
 :TE-optimization problem in multidimensional μ-space

Results :

two complex instruments: 'Flute' vs.'Zinke'(both parts of church organs)

Tuning patterns: red: close to bifurcation, blue: away from bifurcation. red: close to bifurcation,

a) left: sweeping "Reel" target
right: sweeping "Flute" target
(tuning towards "Reel" requests
enhancement of the 3rd and 5th harmonics
(two parallel reddish stripes)

TE consistently < 1: strong target enhancement Black: flat tuning; red: TE-tuning

A) 63836369

(F.G, V.S., N.B., R.S., Phys. Rev. Appl. 2014)

Using pitch as guiding control feature:

original: flute and reel

disturber (flute) and crossproducts removed; harmonic series restored

: efficient biomorphic tool for source separation!

(F.G.,V.S.,N.B., R.S., Phys. Rev. Appl. 2014)

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

CURIER DE CONTRACTOR

Hearing threshold

Verrillo, R.T., Fraioli, A., and Smith, R.L. Sensory magnitude of vibrotactile stimuli. Percept. Psychophys. 6: 366–372, 1969..

Measuring listening efficacy

models of pitch perception suggest comparison:

- SACF: sum of normalized autocorrelations of each section's output
 - VS.
- NACF: normalized autocorrelation of the target signal desired signal x / unwanted signal y / fi output of i-th section

$$TE(x,y) := \frac{||\operatorname{NACF}(x) - \sum_{i} \operatorname{NACF}(f_i(x+y))/N||_2}{||\operatorname{NACF}(y) - \sum_{i} \operatorname{NACF}(f_i(x+y))/N||_2}$$

TE in [0,infinity]:

high (>>1) TE: bad tuning, low (<1): (very) good tuning

:TE-optimization problem in multidimensional μ -space