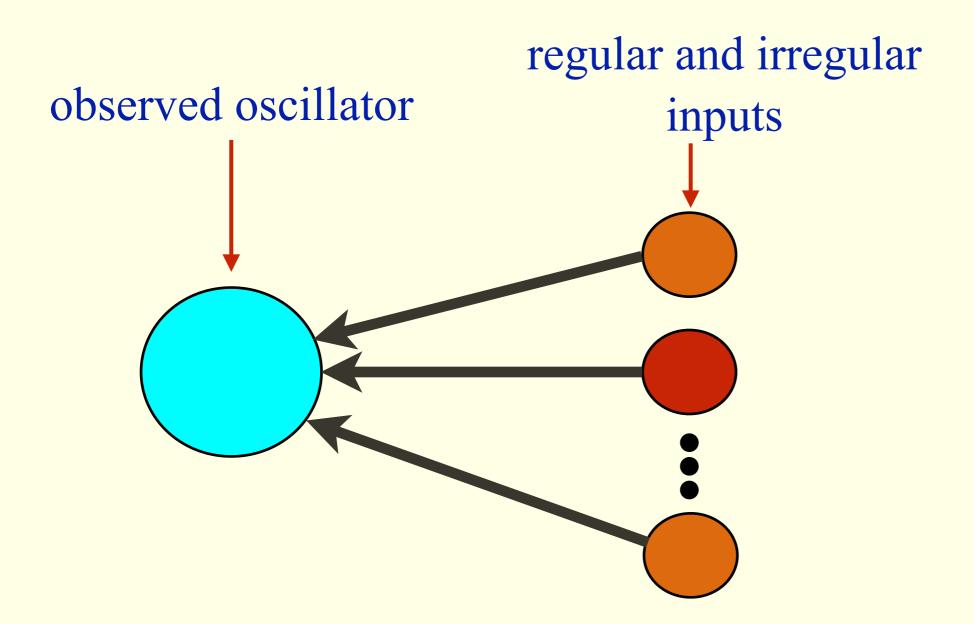


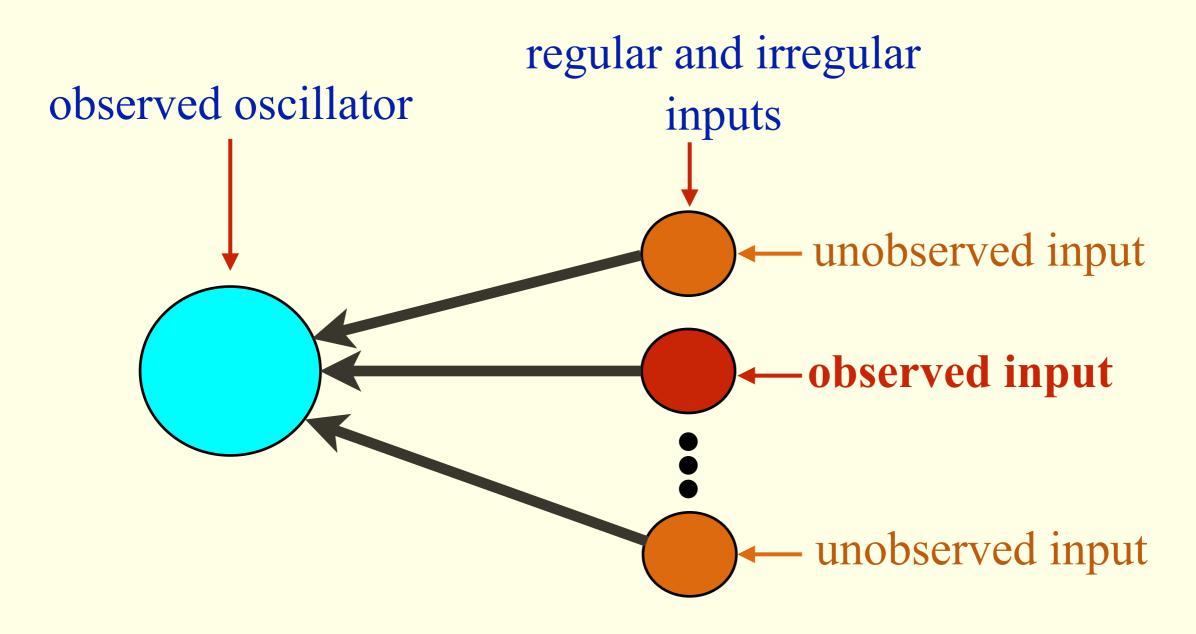
Dynamical disentanglement in analysis of oscillatory systems

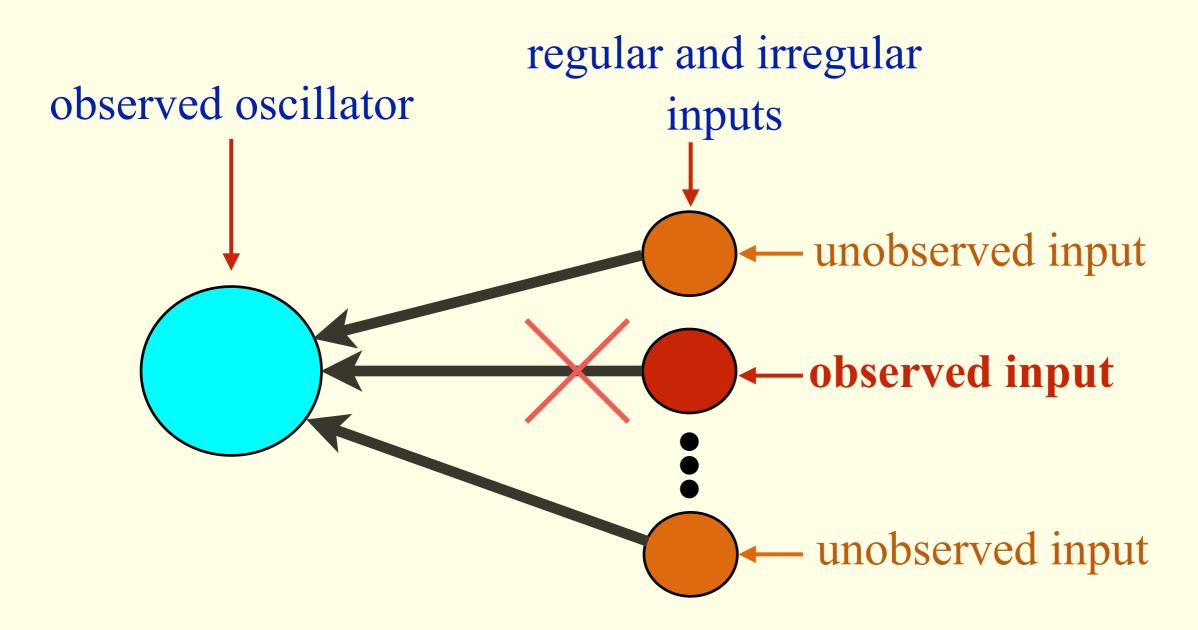
Michael Rosenblum and Arkady Pikovsky

Institute of Physics and Astronomy, Potsdam University, Germany URL: www.stat.physik.uni-potsdam.de/~mros

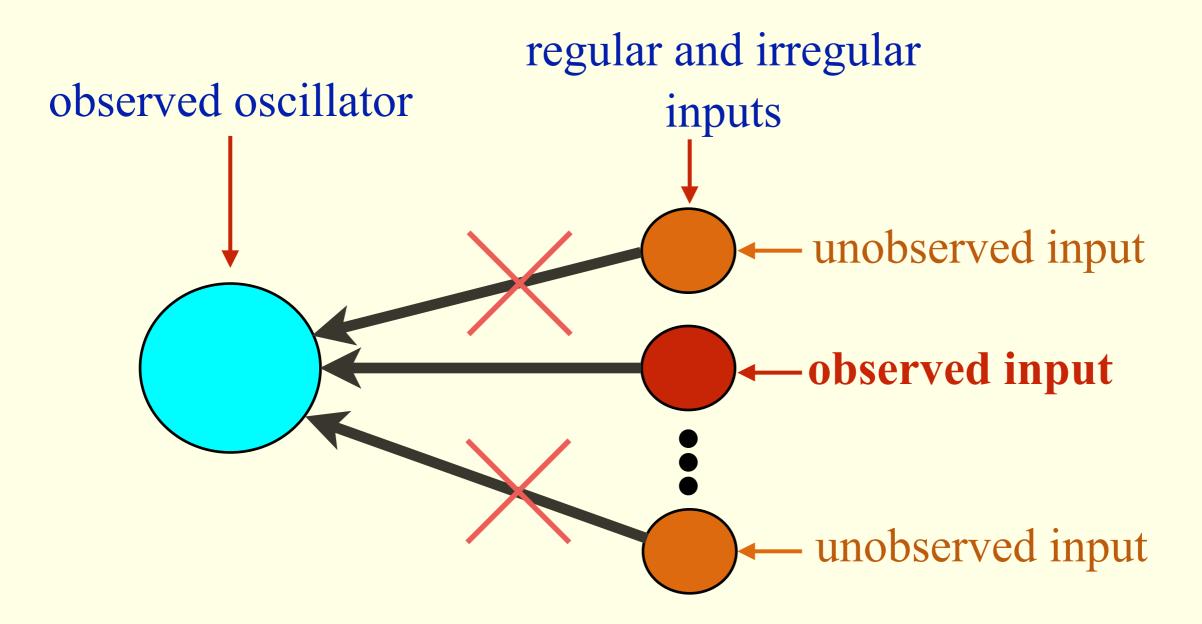
Network Physiology Summer Institute, Como, 2.08.19







Question 1: what would be dynamics of the oscillator if there were no observed input?

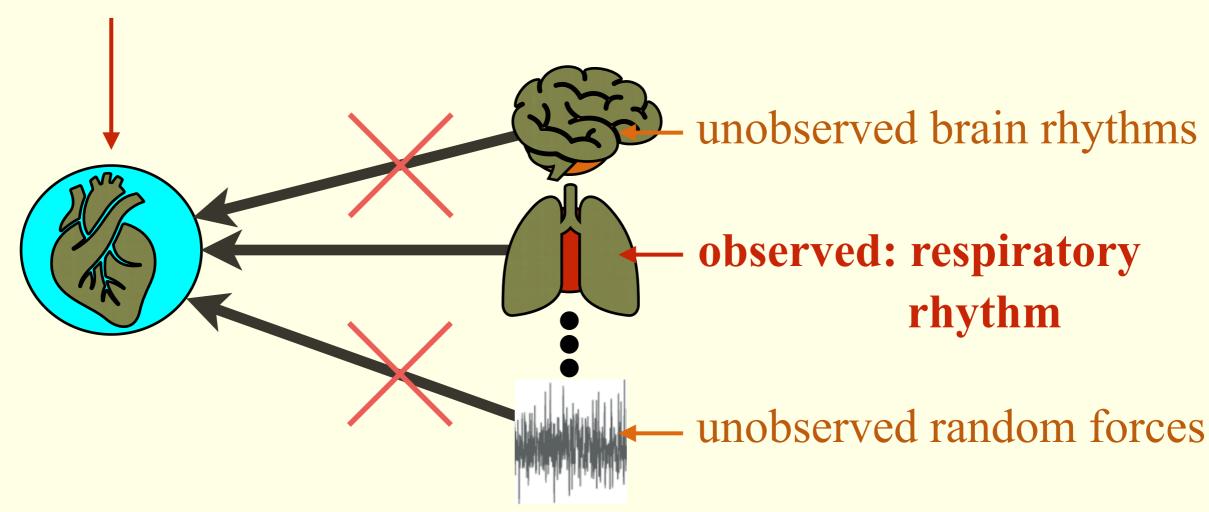


Question 1: what would be dynamics of the oscillator if there were no observed input?

Question 2: what would be dynamics of the oscillator if there were no other inputs?

Dynamical disentanglement: an application

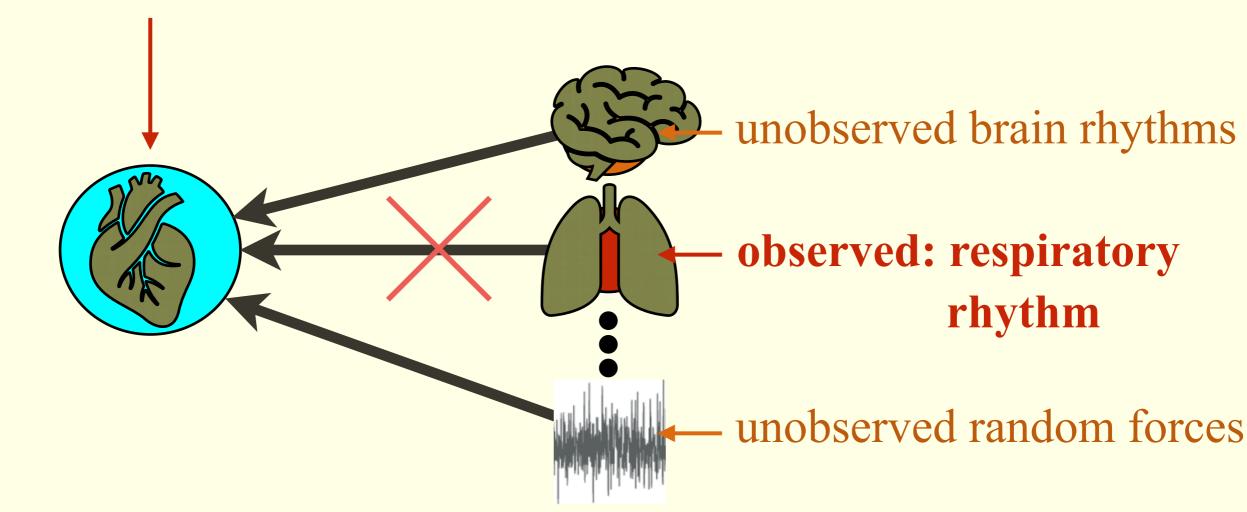
observed oscillator



Question 1: how does the respiratory-related heart rate variability look like?

Dynamical disentanglement: an application

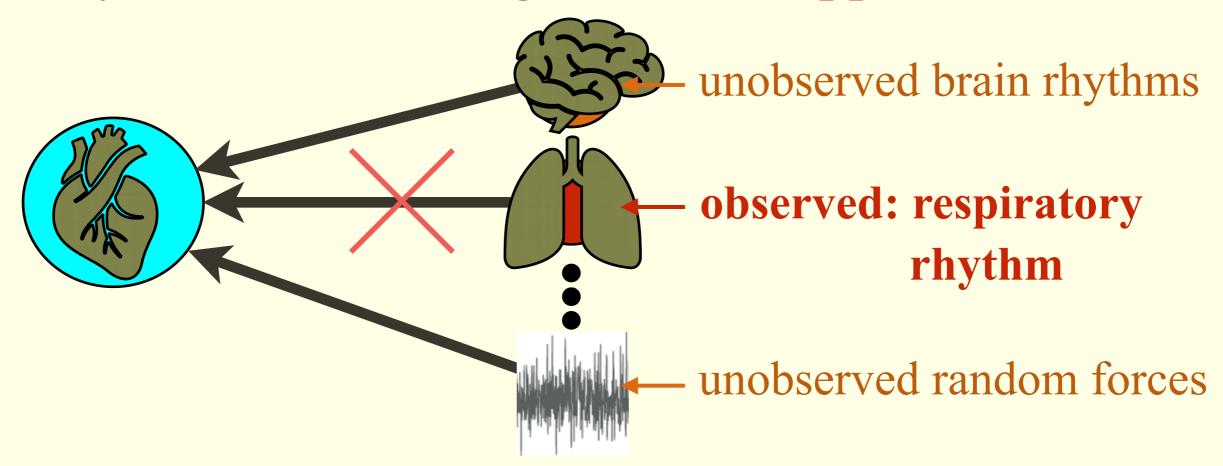
observed oscillator



Question 1: how does the respiratory-related heart rate variability look like?

Question 2: what is the cardiac rhythm variability due to sources other than respiration?

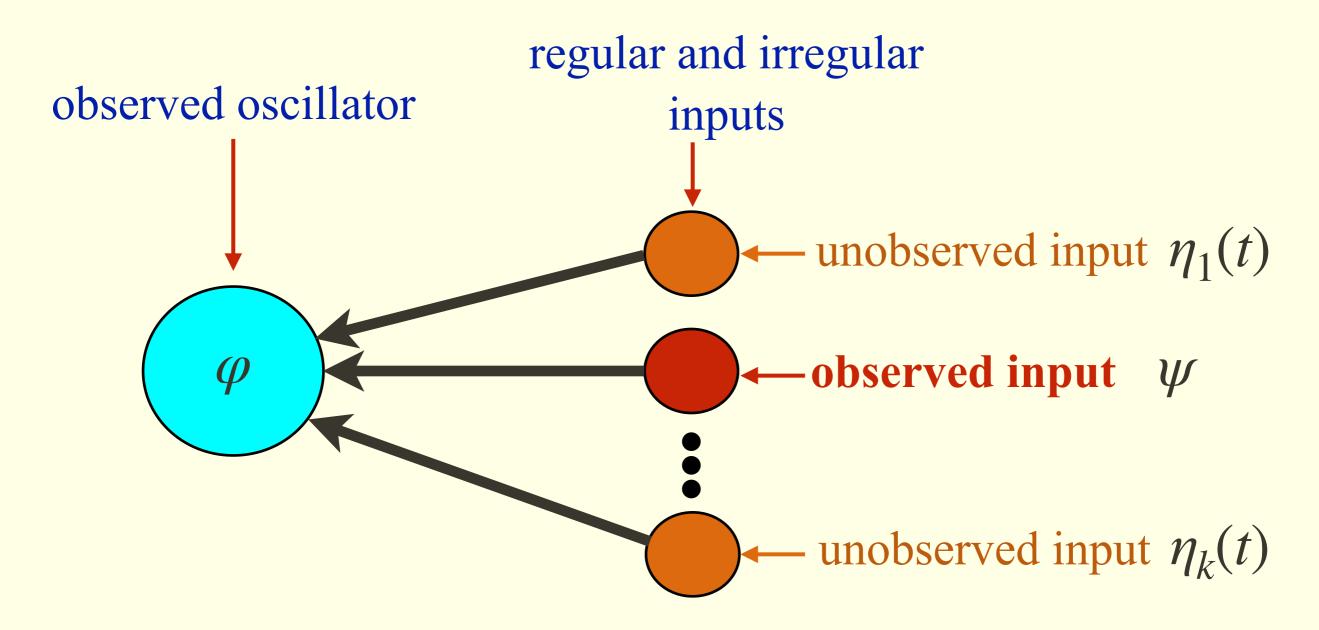
Dynamical disentanglement: an application



Question 1: how does the respiratory-related heart rate variability look like?

Question 2: what is the cardiac rhythm variability due to sources other than respiration?

Our approach is based on inference of the phase dynamics equation from observations



Suppose we can reconstruct phase dynamics from observations:

$$\dot{\varphi} = \omega + Q(\varphi, \psi) + \sum_{k} Q_{k}(\varphi, \eta_{k}(t)) = \omega + Q(\varphi, \psi) + \zeta$$

Suppose we can reconstruct phase dynamics from observations:

$$\dot{\varphi} = \omega + Q(\varphi, \psi) + \sum_{k} Q_{k}(\varphi, \eta_{k}(t)) = \omega + Q(\varphi, \psi) + \zeta$$

Question 1: what would be dynamics of the oscillator if there were no observed input?

we solve equation
$$\dot{\varphi} = \omega + \zeta$$

Question 2: what would be dynamics of the oscillator if there were no other inputs?

we solve equation
$$\dot{\varphi} = \omega + Q(\varphi, \psi)$$

Dynamical disentanglement: simple example

Suppose we have noisy Rayleigh oscillator:

$$\ddot{x} - 4(1 - \dot{x}^2)\dot{x} + x = p(t) = \varepsilon\cos(\nu t) + \zeta(t)$$

For weak perturbation p(t) the coupling function reads

$$\dot{\varphi} = \omega + Q(\varphi, \nu t) + Q_N(\varphi, \zeta(t))$$

Deterministic part $\dot{\varphi} = \omega + Q(\varphi, \nu t)$ describes the noise-free system

We use $\varphi, \psi = \nu t$ to infer Q via fit from observations

While fit \approx averaging, the random perturbations are washed out and we obtain equation $\dot{\varphi} \approx \omega + Q(\varphi, \nu t)$

Dynamical disentanglement: simple example

- We obtain equation $\dot{\varphi} \approx \omega + Q(\varphi, \nu t)$ that describes noise-free system and we can solve it numerically for different ν to predict domain of locking
- Thus, we can find the Arnold tongue from a few measurements of noisy systems
 In experiments, phase can be estimated from data, e.g., with the help of the Hilbert Transform

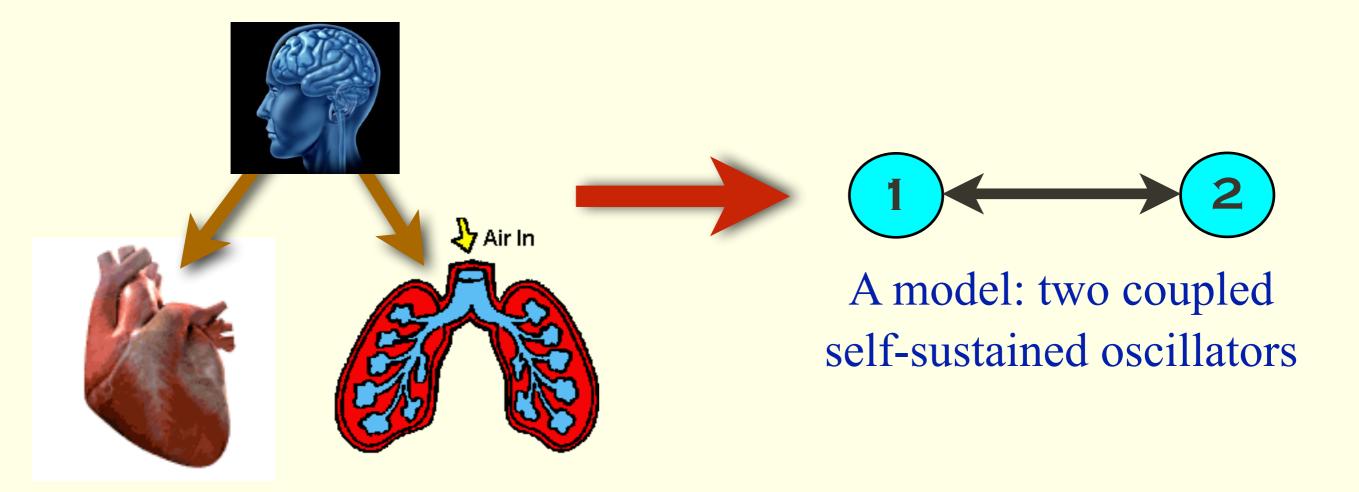
It works perfectly for weak noise and quite good for strong one!

Noisy Rayleigh oscillator



$$arepsilon_* = 0.05 \;, D = 0.05$$

Main example: cardiorespiratory interaction



Analysis: synchronization indices, directionality indices

reconstruction of the phase dynamics model

Our main interest: respiratory-related heart rate variability

Coupled oscillators: phase description

A model: two coupled self-sustained oscillators

$$\dot{\varphi}_1 = \omega_1 + Q_1(\varphi_1, \varphi_2)$$

 $\dot{\varphi}_2 = \omega_2 + Q_2(\varphi_1, \varphi_2)$

Coupled oscillators: phase description

A model: two coupled self-sustained oscillators

$$\dot{\varphi}_1 = \omega_1 + Q_1(\varphi_1, \varphi_2)$$

$$\dot{\varphi}_2 = \omega_2 + Q_2(\varphi_1, \varphi_2)$$
coupling functions

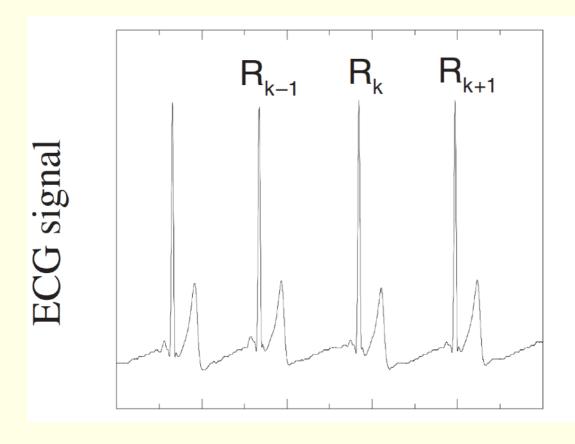
These equations can be reconstructed from data

Cardiorespiratory interaction in adults

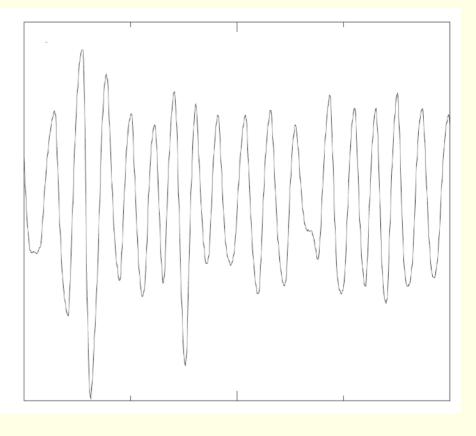
Björn Kralemann¹, Matthias Frühwirth², Arkady Pikovsky³, Michael Rosenblum³, Thomas Kenner⁴, Jochen Schaefer⁵ & Maximilian Moser^{2,4}

Experiments on healthy humans

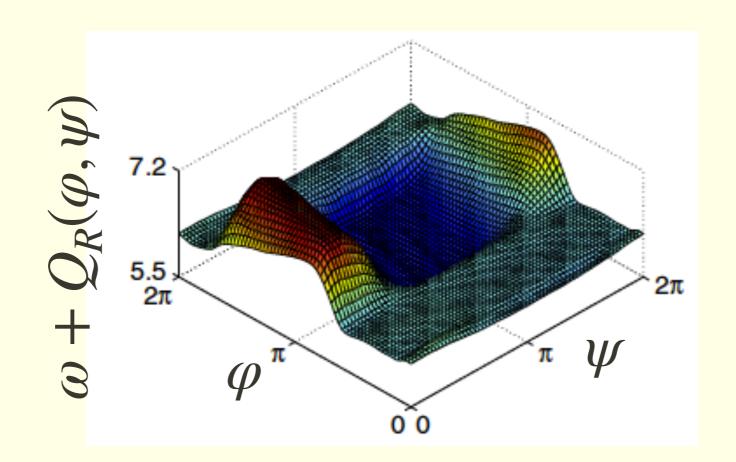
- Spontaneous respiration, supine position, rest state
- Data: ECG, arterial pulse, respiration



respiration



Cardiac dynamics: the coupling function

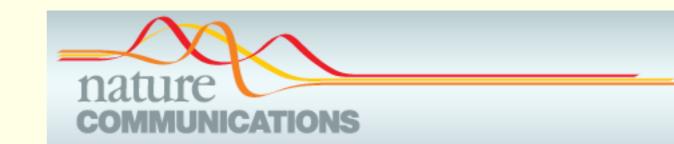


Cardiac phase from ECG

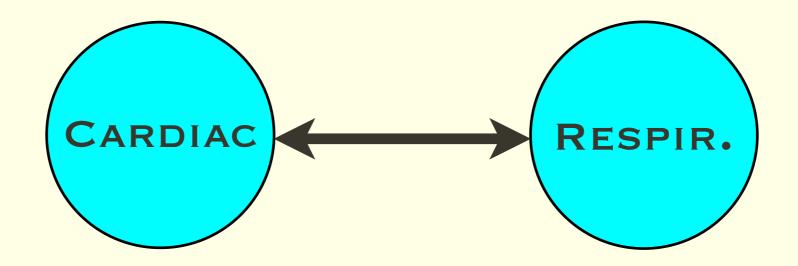
Phase of respiration

$$\dot{\varphi} = \omega + Q_R(\varphi, \psi)$$

stands for 'respiration'



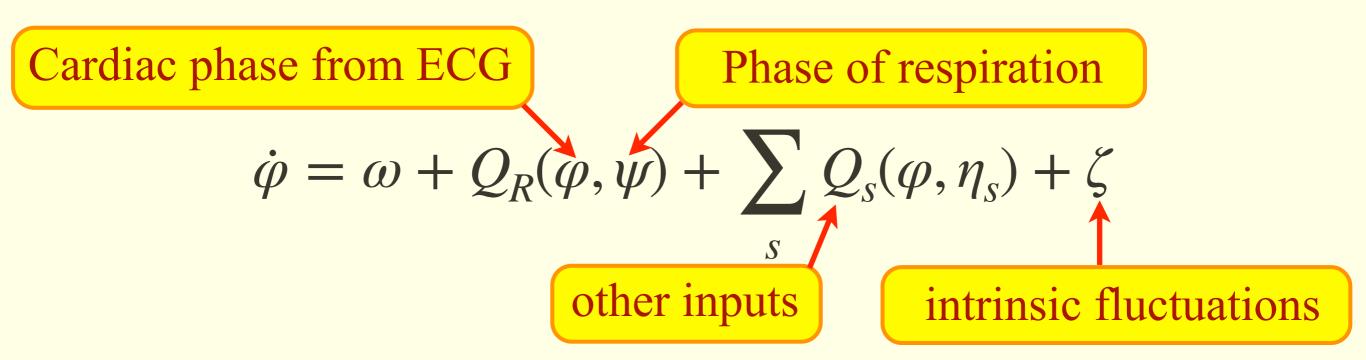
We used the model of two coupled oscillators...



...but it is too simplistic!

Interaction with the environment

Other rhythmical inputs (e.g. some brain rhythms) CARDIAC RESPIR. Irregular inputs (noises)



For weak inputs we expect to have a sum of coupling functions for different inputs, while for stronger inputs we expect cross-terms

Thus, we have two terms:

 $Q_R(\varphi, \psi)$ describes variability due to respiration only

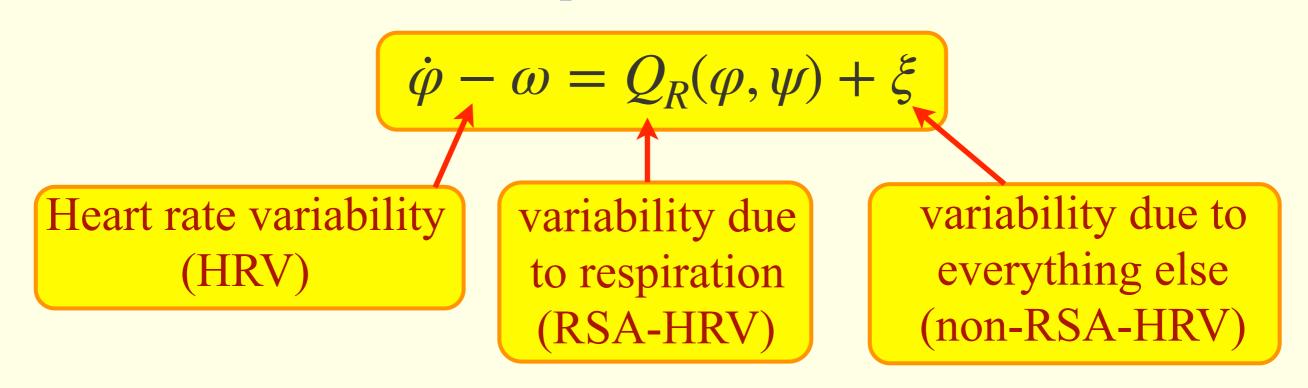
$$\xi = \sum_{s} Q_s(\varphi, \eta_s) + \zeta$$
 describes effect of everything else except respiration

Thus, we have two terms:

 $Q_R(\varphi, \psi)$ describes variability due to respiration only

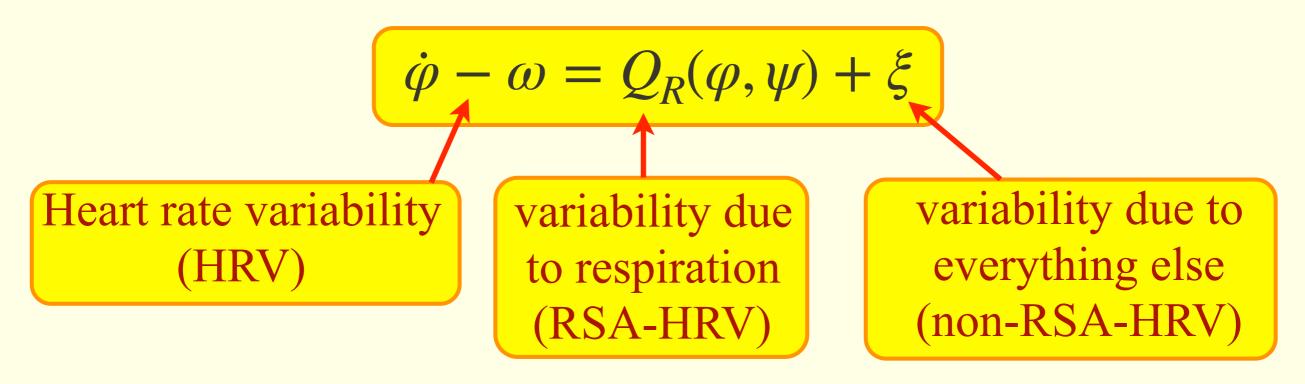
$$\xi = \sum_{s} Q_s(\varphi, \eta_s) + \zeta$$
 describes effect of everything else except respiration

Hence, we achieve a decomposition:



RSA= respiratory sinus arrhythmia

Hence, we achieve a decomposition:



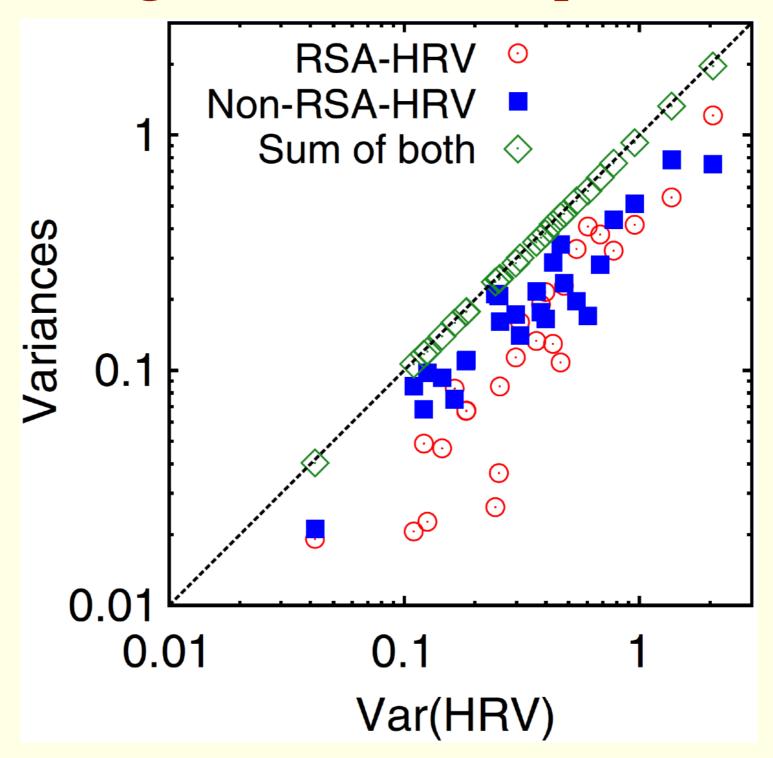
Practically: we estimate Q_R from time series $\dot{\varphi}_k$, φ_k , ψ_k

Then we compute time series $\mu_k = Q_R(\varphi_k, \psi_k)$

Then we compute the rest term $\xi_k = \dot{\varphi}_k - \omega - \mu_k$

Thus,
$$\dot{\varphi}_k - \omega = \mu_k + \xi_k$$

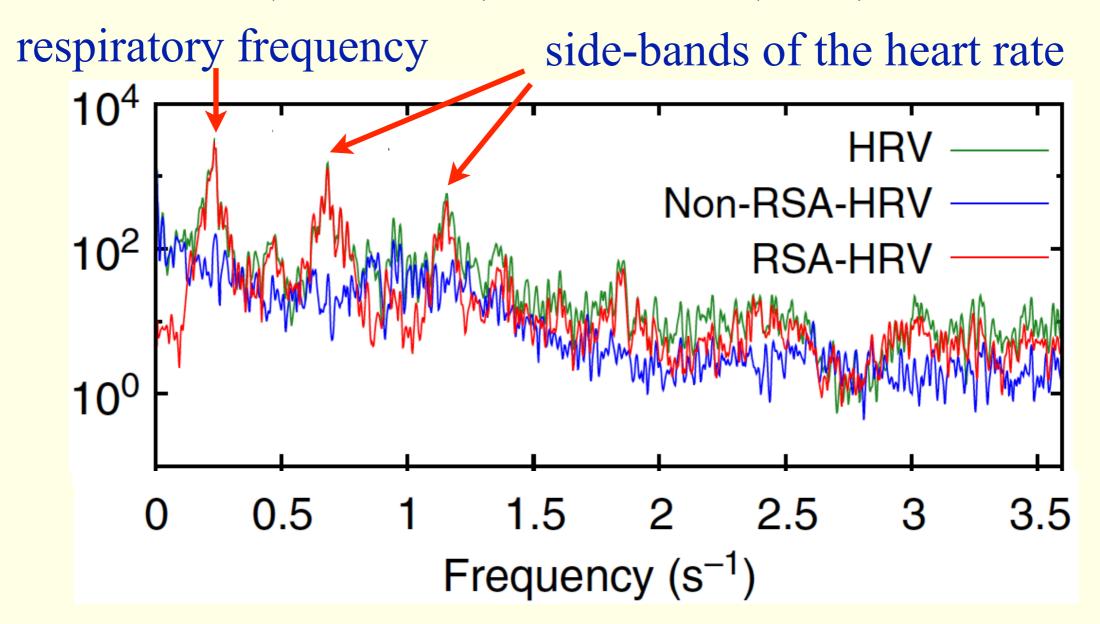
How good is this decomposition?



Var(RSA-HRV)+Var(Non-RSA-HRV) ≈ Var(HRV) as expected for non-correlated processes

Decomposition: power spectra

Subject with maximal content of respiratory-related component $Var(RSA-HRV) \approx 0.67 Var(HRV)$



Respiratory-related peaks are well-described by RSA-HRV component

Summary for this example

Starting with instantaneous phases of cardiac and respiratory systems we disentangled heart rate variability into a component due to respiration and a component due to other factors

However, medical doctors and researchers are used to operate with inter-beat intervals (RR-intervals)

We have to generate sequences of RR-intervals for respiratory-related and non-respiratory related components

Cardiac phase from ECG

Phase of respiration

$$\dot{\varphi} = \omega + Q_R(\varphi, \psi) + \xi$$

other inputs and intrinsic fluctuations

Now we introduce two *new phases*:

 φ_R describes effect of respiration (and only respiration!) and obeys $\dot{\varphi}_R = \omega + Q_R(\varphi_R, \psi)$

 φ_{NR} describes effect of everything else except respiration and obeys $\dot{\varphi}_{NR} = \omega + \xi$

We obtain new phases solving the corresponding equations (Euler technique)

New RR-intervals

We obtain φ_R , φ_{NR} simulating the corresponding equation

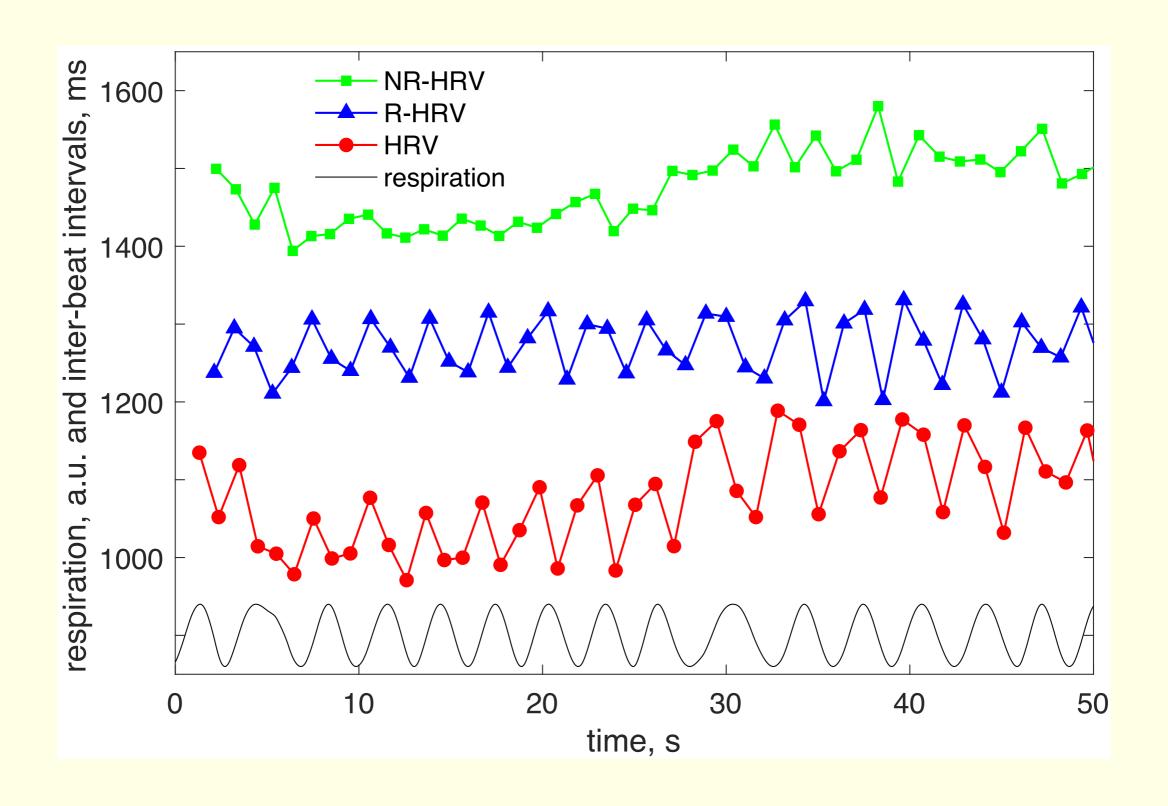
We obtain instants of respiratory-related R-peaks from the condition $\varphi_R(t_k^R) = 2\pi k$

We obtain instants of non-respiratory-related R-peaks from the condition $\varphi_{NR}(t_k^{NR}) = 2\pi k$

RR-intervals $t_{k+1}^R - t_k^R$: respiratory-related component of HRV

RR-intervals $t_{k+1}^{NR} - t_k^{NR}$: variability due to all other factors

An example



We suggest to use dynamical disentanglement as a universal preprocessing tool prior to computation of any measures of respiratory sinus arrhythmia (RSA)

Çağdaş Topçu^{1,2}, Matthias Frühwirth³, Maximilian Moser^{1,3}, Michael Rosenblum^{2,4,5} and Arkady Pikovsky^{2,4}

Physiological Measurement

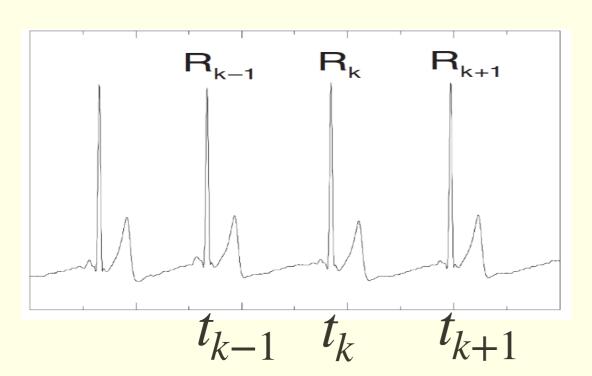
A practical algorithm

- The proposed technique operates with <u>time-continuous</u> phases of the cardiac and respiratory systems, $\varphi(t)$, $\psi(t)$
- Computation of $\varphi(t)$ is quite complicated: it requires high-quality measurements and extensive preprocessing
- Hence, we need a practical (maybe approximate) algorithm that would operate only with R-peaks, i.e. with a point process

A practical algorithm

- The proposed technique operates with time-continuous phases of the cardiac and respiratory systems, $\varphi(t)$, $\psi(t)$
- Computation of $\varphi(t)$ is quite complicated: it requires high-quality measurements and extensive preprocessing
- Hence, we need a practical (maybe approximate) algorithm that would operate only with R-peaks, i.e. with a point process

... and here it is!



Interbeat intervals $T_k = t_{k+1} - t_k$

Recall the equation

$$\dot{\varphi} = \omega + Q_R(\varphi, \psi) + \xi$$

Consider deterministic part and assume weak coupling, $\parallel Q_R \parallel \ll \omega$

$$T_k = \int_0^{2\pi} \frac{d\varphi}{\omega + Q_R(\varphi, \psi)} \approx \frac{2\pi}{\omega} - \frac{1}{\omega^2} \int_0^{2\pi} Q_R(\varphi, \psi) d\varphi$$

Respiration is much slower than the heart rate

we approximate $\psi(t)$ by a piece-wise linear function:

$$\psi(t) = \psi(t_k) + \omega_k^{(R)}(t-t_k) \text{ for } t_k \leq t \leq t_{k+1}$$

$$T_k = \int_0^{2\pi} \frac{d\varphi}{\omega + Q_R(\varphi, \psi)} \approx \frac{2\pi}{\omega} - \frac{1}{\omega^2} \int_0^{2\pi} Q_R(\varphi, \psi) d\varphi$$

Respiration is much slower than the heart rate

we approximate $\psi(t)$ by a piece-wise linear function:

$$\psi(t) = \psi(t_k) + \omega_k^{(R)}(t - t_k)$$
 for $t_k \le t \le t_{k+1}$

Then

$$\int_0^{2\pi} Q_R(\varphi, \psi) d\varphi = \int_0^{T_k} Q_R[\varphi(t), \psi(t)] dt \approx F(\psi_k, \omega_k^{(R)})$$

$$T_k \approx T - F(\psi_k, \omega_k^{(R)})/\omega^2$$
 with $T = 2\pi/\omega$

$$\int_0^{2\pi} Q_R(\varphi, \psi) d\varphi = \int_0^{T_k} Q_R[\varphi(t), \psi(t)] dt \approx F(\psi_k, \omega_k^{(R)})$$

$$T_k \approx T - F(\psi_k, \omega_k^{(R)})/\omega^2$$
 with $T = 2\pi/\omega$

We introduce mean respiratory frequency $\bar{\omega}$ and represent F as a Taylor-Fourier series:

$$T_{k} \approx T + \sum_{n=1}^{N_{F}} \left\{ \left[\sum_{m=0}^{N_{T}-1} a_{n,m} (\omega_{k}^{(R)} - \bar{\omega})^{m} \right] \cos(n\psi_{k}) + \left[\sum_{m=0}^{N_{T}-1} b_{n,m} (\omega_{k}^{(R)} - \bar{\omega})^{m} \right] \sin(n\psi_{k}) \right\}$$

 N_T , N_F : orders of the Taylor-Fourier series

$$T_k \approx T + \sum_{n=1}^{N_F} \left\{ \left[\sum_{m=0}^{N_T - 1} a_{n,m} (\omega_k^{(R)} - \bar{\omega})^m \right] \cos(n\psi_k) + \left[\sum_{m=0}^{N_T - 1} b_{n,m} (\omega_k^{(R)} - \bar{\omega})^m \right] \sin(n\psi_k) \right\}$$

Coefficients $a_{n,m}$, $b_{n,m}$ can be found, e.g., by LMS fit

We obtain a coupling map for RR-intervals

$$T_k \approx T + \mathscr{F}\left[\psi(t_k), \dot{\psi}(t_k)\right]$$

We take
$$\omega_k^{(R)} = \dot{\psi}(t_k)$$

Construction of the respiratory-related RR-series

We obtain a coupling map for RR-intervals

$$T_k \approx T + \mathscr{F}\left[\psi(t_k), \dot{\psi}(t_k)\right]$$

Now we construct the respiratory-related RR-intervals:

We take
$$t_1^{(R)} = t_1$$

Substituting $\psi(t_1)$, $\dot{\psi}(t_1)$ into the model we obtain T_1 and

$$t_2^{(R)} = t_1^{(R)} + T_1$$
 ... and so on, to obtain all $t_k^{(R)}$

and intervals
$$T_k^{(R)} = t_{k+1}^{(R)} - t_k^{(R)}$$

Construction of the non-respiratory-related RR-series

We obtain a coupling map for RR-intervals

$$T_k \approx T + \mathscr{F}\left[\psi(t_k), \dot{\psi}(t_k)\right]$$

First, for all original intervals we obtain the rest term (effective noise)

$$\xi_k = T_k - T - \mathscr{F} \left[\psi(t_k), \dot{\psi}(t_k) \right]$$

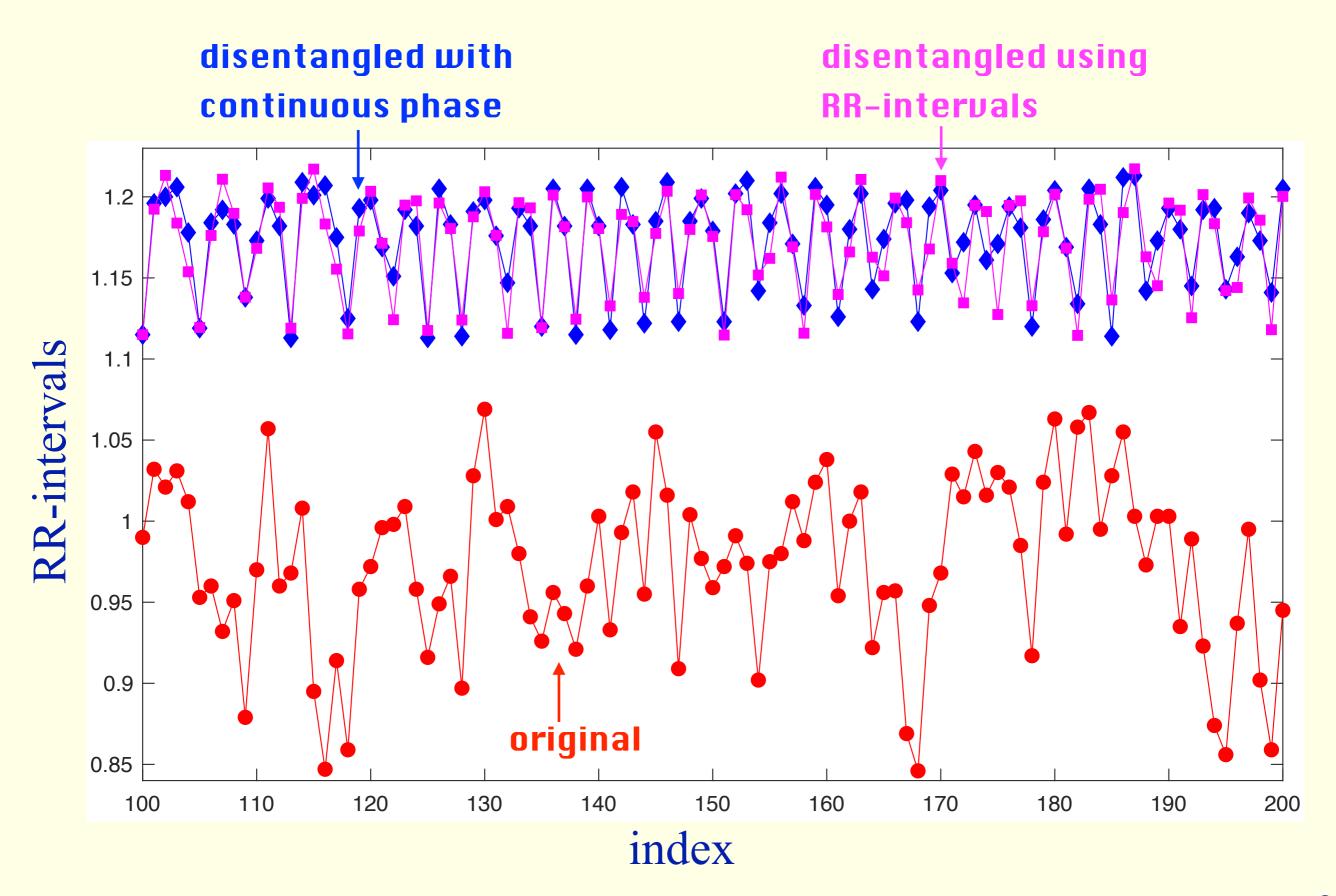
We start with $t_1^{(NR)} = t_1$ and obtain $t_2^{(NR)} = t_1^{(NR)} + T + \xi_1$

Next, if already computed $t_l^{(NR)}$ obeys $t_k < t_l^{(NR)} < t_{k+1}$

then
$$t_{l+1}^{(NR)} = t_l^{(NR)} + T + \xi_k + \frac{\xi_{k+1} - \xi_k}{t_{k+1} - t_k} (t_l^{(NR)} - t_k)$$

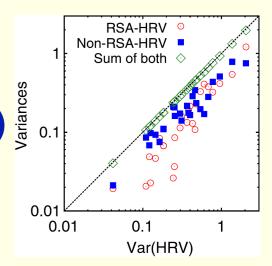
and
$$T_k^{(NR)} = t_{k+1}^{(NR)} - t_k^{(NR)}$$

Results: real data



For continuous phase data we have checked that

 $Var(RSA-HRV)+Var(Non-RSA-HRV) \approx Var(HRV)^{\frac{6}{20}}$ 0.1 as expected for non-correlated processes



We now check it for point-process time series of R-peaks, taking the phase to be piece-wise linear between the events,

$$\dot{\varphi}(t) = 2\pi/T_k$$
 for $t_k \le t < t_{k+1}$

and obtaining

and obtaining
$$\sigma^2 = \text{VAR}(\dot{\varphi}(t)) = \frac{4\pi^2}{T_{\Sigma}} \sum_{k=1}^{N} \left(\frac{1}{T_k} - \frac{N}{T_{\Sigma}} \right)^2 T_k, T_{\Sigma} = \sum_{k} T_k$$

We compute variance for 4 series of intervals:

For continuous phase d

Var(RSA-HRV)+Va as expected for non

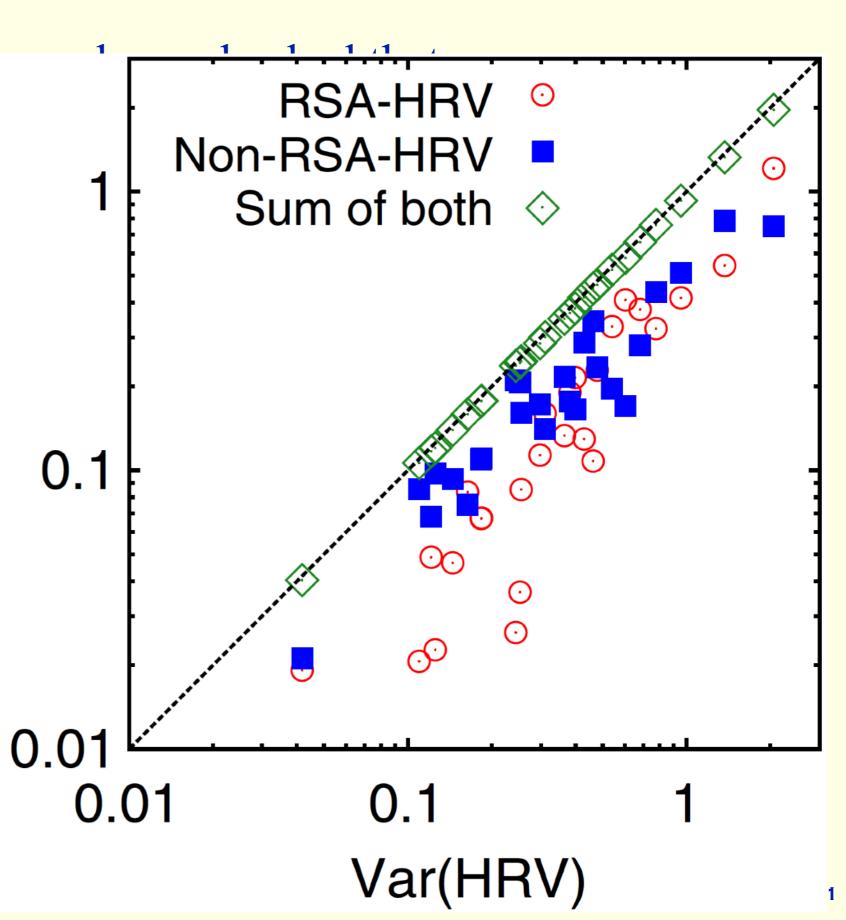
We now check it for po taking the phase to be 1. $\dot{\varphi}(t) = 2\pi \dot{S}$

$$\dot{\varphi}(t) = 2\pi t$$

and obtaining

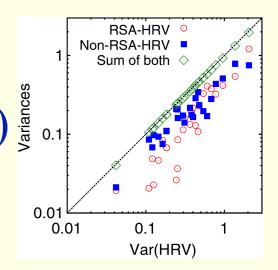
$$\sigma^2 = \text{Var}(\dot{\varphi}(t)) =$$

We compute variance:



For continuous phase data we have checked that

 $Var(RSA-HRV)+Var(Non-RSA-HRV) \approx Var(HRV)$ as expected for non-correlated processes



We now check it for point-process time series of R-peaks, taking the phase to be piece-wise linear between the events,

$$\dot{\varphi}(t) = 2\pi/T_k$$
 for $t_k \le t < t_{k+1}$

and obtaining
$$\sigma^2 = \text{VAR}(\dot{\varphi}(t)) = \frac{4\pi^2}{T_{\Sigma}} \sum_{k=1}^{N} \left(\frac{1}{T_k} - \frac{N}{T_{\Sigma}}\right)^2 T_k, T_{\Sigma} = \sum_{k} T_k$$

We compute variance for 4 series of intervals:

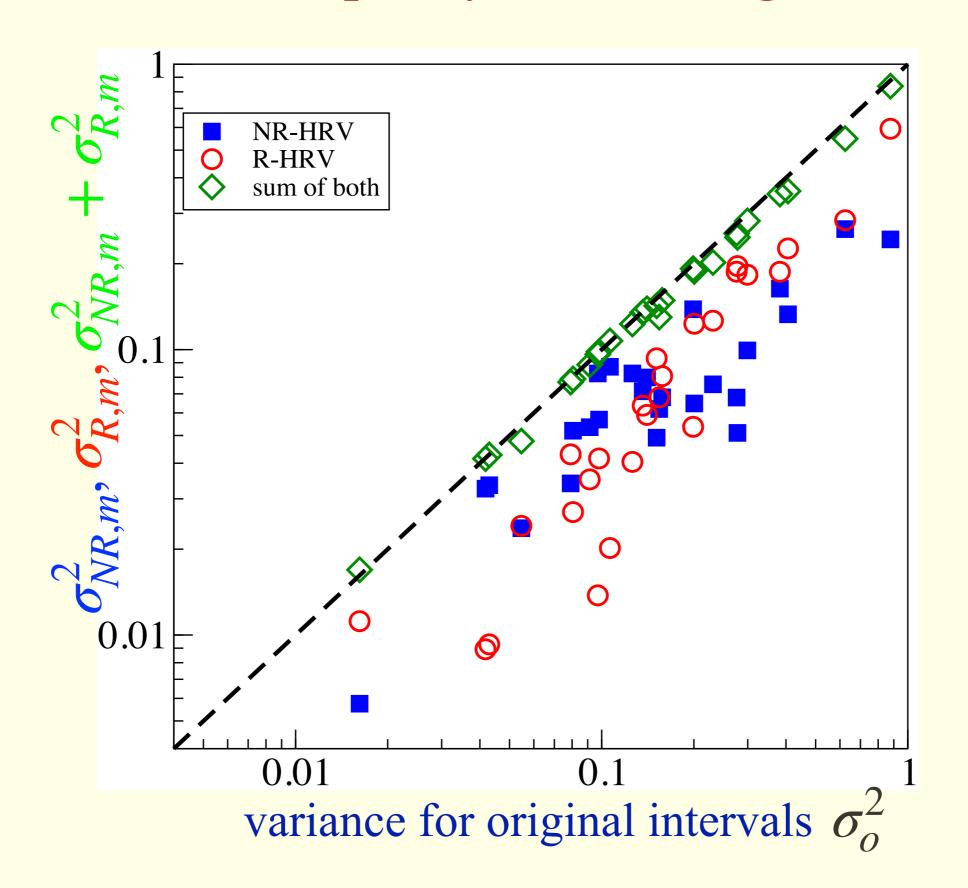
$$\dot{\varphi}(t) = 2\pi/T_k \text{ for } t_k \le t < t_{k+1} \qquad \sigma^2 = \text{var}(\dot{\varphi}(t))$$

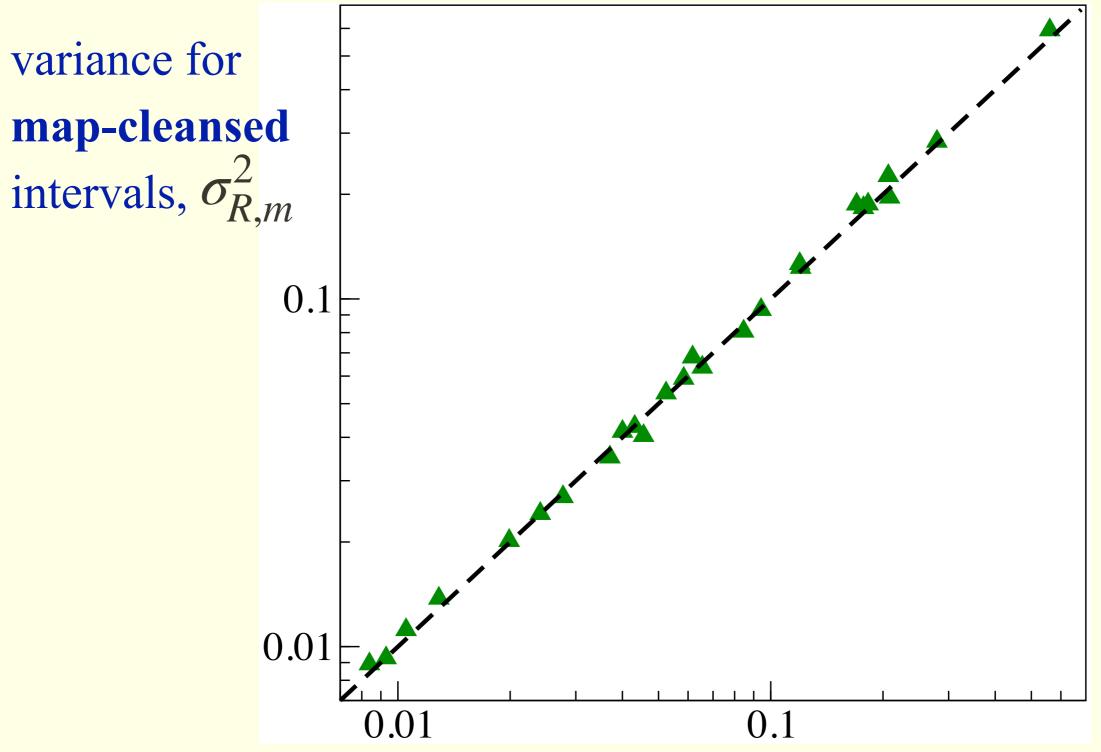
We compute variance for 4 series of intervals:

- variance σ_o^2 for original intervals
- variance $\sigma_{R,c}^2$ for **continuously-cleansed** respiratory-related intervals,
- variance $\sigma_{R,m}^2$ for map-cleansed respiratory-related intervals
- variance $\sigma_{NR,m}^2$ for **map-cleansed** non-respiratory-related intervals

We check that:
$$\sigma_{R,c}^2 \approx \sigma_{R,m}^2$$

$$\sigma_{R,m}^2 + \sigma_{NR,m}^2 \approx \sigma_o^2$$





variance for continuously-cleansed intervals, $\sigma_{R,c}^2$

Conclusions

- Dynamical disentanglement: A tool to extract variability due to a certain rhythm
- Not a usual filter
- Can be used as a universal preprocessing tool in analysis of heart rate variability, in particular for quantification of respiratory sinus arrhythmia

References

- B. Kralemann et al, "*In vivo* cardiac phase response curve elucidates human respiratory heart rate variability", Nature Communications, **4**, p. 2418, 2013
- C. Topçu et al, "Disentangling respiratory sinus arrhythmia in heart rate variability records", Physiological Measurements, **39**, p. 054002, 2018
- M. Rosenblum and A. Pikovsky. "Efficient determination of synchronization domains from observations of asynchronous dynamics", Chaos, **28**, 106301, 2018
- M. Rosenblum et al. "Dynamical disentanglement in an analysis of oscillatory systems: an application to respiratory sinus arrhythmia", submitted