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Dynamical disentanglement: an application

%

unobserved brain rhythms

observed: respiratory
rhythm

unobserved random forces

Question 1: how does the respiratory-related heart rate variability
look like?

Question 2: what 1s the cardiac rhythm variability due to sources
other than respiration?

Our approach 1s based on inference of the phase dynamics equation
from observations
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Suppose we can reconstruct phase dynamics from observations:

¢ =0+ 0. W)+ ) Q. n(1) = o+ Q. ) +§
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Dynamical disentanglement

Suppose we can reconstruct phase dynamics from observations:
o =w+0@.w) + ) Qp.n®) =+ Qe.p)+{
k

Question 1: what would be dynamics of the oscillator 1f there
were no observed mput?

== we solve equation @ = w +

Question 2: what would be dynamics of the oscillator 1f there
were no other mputs?

== we solve equation @ = @ + O(@, Y)
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Dynamical disentanglement: simple example

Suppose we have noisy Rayleigh oscillator:

¥ —4(1 — 3% + x = p(t) = ecos(vt) + £(¢)

L noise

For weak perturbation p(?) the coupling function reads

» = o+ Q(p,vt) + Oy, {(1))

Deterministic part @ = @ + OQ(@, vt) describes the
noise-free system

We use @, yy = vt to infer Q via fit from observations

While fit &~ averaging, the random perturbations are washed out

and we obtain equation @ ~ @ + O(@, V1)
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Dynamical disentanglement: simple example

== We obtain equation @ ~ @w + Q(, V1)

that describes noise-free system and we can solve 1t

numerically for different v to predict domain of locking

=== Thus, we can find the Arnold tongue from a few

measurements o

In experiments,

f noisy systems

phase can be estimated from data,

e.g., with the hel

p of the Hilbert Transform

It works perfectly for weak noise and quite good for strong one!
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Noisy Rayleigh oscillator

0.01 . | |
\

i \ true curve for the noise-free[system

0.005 - r —

true curve for the noisy system

7 -
%o /L_ e -
- ‘recovered with v, = 0.6 (S
\
-0.005 - recovered withv, = 0.63 "‘\ -
\
i .‘\_
-OO | | | | | | \
b6 0.61 0.62 0.63

e, = 0.05, D = 0.05



Main example: cardiorespiratory interaction

A model: two coupled
self-sustained oscillators

Analysis: synchronization indices, directionality indices

reconstruction of the phase dynamics model

Our main interest: respiratory-related heart rate variability
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Coupled oscillators: phase description

O—3

A model: two coupled
self-sustained oscillators

», = w; + Q1@ )
Py = Wy + OQr(@1, )
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Coupled oscillators: phase description

O—3

A model: two coupled
self-sustained oscillators

», = w; + Q1@ )
Py = Wy HOH (@1, )

coupling functions

These equations can be reconstructed from data
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Cardiorespiratory interaction in adults

Bjorn Kralemann', Matthias Frihwirth?, Arkady Pikovsky3, Michael Rosenblum3, Thomas Kenner?,

Jochen Schaefer® & Maximilian Moser%4

?(ﬁé}(\ Experiments on healthy humans

COMMUNICATIONS

® Spontaneous respiration, supine position, rest state

e Data: ECQG, arterial pulse, respiration

[ ' I ' [ ! I

Re: Re R i
A ) i

respiration

ECG signal




Cardiac dynamics: the coupling function

@ + QR((pv l//)

Cardiac phase from ECG Phase of respiration

@ = a)+QR>‘<0 1,}{

stands for° resplratlon
nature \

COMMUNICATIONS



We used the model of two coupled oscillators...

...but it is too simplistic!
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Interaction with the environment

Other rhythmical inputs (e.g. some brain rhythms)

Irregular inputs (noises)
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Phase dynamics with account of many inputs

Cardiac phase from ECG Phase of respiration

¢ =+ QR@, 1,‘/{ + Zst(% 1) + %

other inputs intrinsic fluctuations

For weak inputs we expect to have a sum of coupling functions
for different inputs, while for stronger inputs we expect cross-terms

Thus, we have two terms:

Or(@,y) describes variability due to respiration only

E = Z QJ@,n,) + ¢ describes effect of everything else

G except respiration
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Phase dynamics with account of many inputs

Thus, we have two terms:

Or(@,y) describes variability due to respiration only

E = z QJ@,n,) + ¢ describes effect of everything else

G except respiration

Hence, we achieve a decomposition:

¢ — @ = Op(g,p) +¢

/1

Heart rate variability | | variability due variability due to
(HRV) to respiration everything else
(RSA-HRYV) (non-RSA-HRV)

RSA= respiratory sinus arrhythmia
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Phase dynamics with account of many inputs

Hence, we achieve a decomposition:

@ —w=0pl@,p)+¢

/1

Heart rate variability | | variability due variability due to
(HRV) to respiration everything else
(RSA-HRYV) (non-RSA-HRV)

Practically: we estimate QR from time series Qbk, Drs Yy

Then we compute time series M = QR(¢k9 l//k)
Then we compute the rest term &, = @, — @ — K,

Thus, @ — @ = Wy, + &,
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How good is this decomposition?

. RSA-HRV ©
Non-RSA-HRV =
1 ;' Sum of both <&

0
(b
O
-
©
s 0.1
> |
A
S om® "
0.0 0.1 1
Var(HRV)

Var(RSA-HRV)+Var(Non-RSA-HRV) & Var(HRV)

as expected for non-correlated processes
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Decomposition: power spectra

Subject with maximal content of respiratory-related component
Var(RSA-HRV) = 0.67 Var(HRV)

respiratory frequency side-bands of the heart rate
104 l ) / ' ' '
- HRV
Non-RSA-H ?V

102 Mt a *y\ﬁ‘ \. RSA-HR ]
" '\'w m i “‘b"r"‘P‘Ml/. mMW” o WM ".’W

0 0.5 1 1.5 2 2.5 3 3.5
Frequency (s7)

== R cspiratory-related peaks are well-described by
RSA-HRV component

10° 1
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Summary for this example

Starting with instantaneous phases of cardiac and respiratory
systems we disentangled heart rate variability into a component
due to respiration and a component due to other factors

However, medical doctors and researchers are used to operate
with inter-beat intervals (RR-1ntervals)

== We have to generate sequences of RR-intervals
for respiratory-related and non-respiratory related

components
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Phase dynamics with account of many inputs

Cardiac phase from ECG Phase of respiration

60 :a)_l_QR}(Ap’E‘”{_l_ 5\

other inputs and intrinsic fluctuations

Now we 1ntroduce two new phases:

®Pr describes effect of respiration (and only respiration!)
and obeys @r = @ + Qp(@p, V)
PnNRr describes effect of everything else except respiration
and obeys Pyp = @ + ¢
We obtain new phases solving the corresponding equations

(Euler technique)
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New RR-intervals

We obtain @p, @np simulating the corresponding equation
We obtain instants of respiratory-related R-peaks from the

COnditiOn ¢R(tl§) — Z]Tk

We obtain instants of non-respiratory-related R-peaks from the

condition R

RR-intervals tl§+1 — t,f . respiratory-related component of HRV

RR-intervals t,iv Rl — t]iv K, variability due to all other factors
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respiration, a.u. and inter-beat intervals, ms
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We suggest to use dynamical disentanglement as a
universal preprocessing tool prior to computation
of any measures of respiratory sinus arrhythmia (RSA)

Cagdas Topq|u1’3, Matthias Frithwirth’, Maximilian Moser'©, Michael Rosenblum”>*°® and
Arkady Pikovsky ** : :
! ! Physiological Measurement
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A practical algorithm

® The proposed technique operates with time-continuous phases

of the cardiac and respiratory systems, @(7), (1)

e Computation of @(7) is quite complicated: it requires high-
quality measurements and extensive preprocessing

® Hence, we need a practical (maybe approximate) algorithm that
would operate only with R-peaks, 1.e. with a point process
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A practical algorithm

® The proposed technique operates with time-continuous phases

of the cardiac and respiratory systems, @(7), (1)

e Computation of @(7) is quite complicated: it requires high-
quality measurements and extensive preprocessing

® Hence, we need a practical (maybe approximate) algorithm that
would operate only with R-peaks, 1.e. with a point process

...and here it is!
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Disentanglement from RR-intervals and respiration

<+ R Ra | Interbeatintervals T, =, | — [,

Recall the equation

@ =+ O, p) +¢

-1 U Tkt
Consider deterministic part and assume weak coupling, || Op |<< w

, w
: 0 Q) T QR((ﬂ, l//) ) Q) 0 K

Respiration 1s much slower than the heart rate *
we approximate W(7) by a piece-wise linear function:
R
w(t) = w(t,) + a)lg )t — ) FOR 1, <t < by
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Disentanglement from RR-intervals and respiration

e[ L s
= N——— R
oy o+ Oy @ 02, "

Respiration 1s much slower than the heart rate e

we approximate (7)by a piece-wise linear function:

w() =y() + oVt —1) For 1§ <1<t

Then
2r T,
J Or(@, y)de = J Orlo (), w(D]dt = F(yp, ™)
0 0

T ~T-—F(y, a)IER))/a)2 WITH T =27/w
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Disentanglement from RR-intervals and respiration

0

27T
[ Or(@, W)dp = J

I

0

I~ T-— F(y, a)IER))/a)2 wWITH T =2n/w

We introduce mean respiratory frequency @

and represent F as a Taylor-Fourier series:

Nr
T~ T+ Y {
n=1

" N—1

- m=0

2 an,m(a)lgR) — )"

cos(ny,) +

Ny—1 I
Y by (@ — @)
m=0

N7, Ny : orders of the Taylor-Fourier series

Orlop(0), w()dt = F(y, o)

sin(ny;,) }
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Disentanglement from RR-intervals and respiration

N
T,xT+ Y {
n=1

Coetficients a

We take a)(R) = ()

_NT_I

Y a,,(@® — o)

L m=0

n,ms?

I~ T+

cos(ny,,) +

" N;—1
D by (@ — @)
m=0

b, ,, can be found, e.g., by LMS fit

F |p(t), (1)

sin(ny;,) }

» We obtain a coupling map for RR-intervals
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Construction of the respiratory-related RR-series

* We obtain a coupling map for RR-1intervals
Ti~ T+ F |yt yr(ty)]
Now we construct the respiratory-related RR-1ntervals:

We take 1) = 1,

Substituting (), Y(f;) into the model we obtain 7 and

tz(R) — tl(R) + T, ... and so on, to obtain all tIER)

(R) _ +(R) (R)
and intervals T tk | tk
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Construction of the non-respiratory-related RR-series

* We obtain a coupling map for RR-1intervals

T~ T+ F |pt), 1)
First, for all original intervals we obtain the rest term (effective noise)
& =T, —T—F [y, ()
We start with L (NB) = = f, and obtain t(NR) = t(NR) + T+ &

Next, 1f already computed t(NR) obeys 7, < t( R < b1

41 — 6
then 1M = VR 4 T4 & - “(tVR — 1)
lev1 — I

and TR = (VR _ (VR
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RR-1intervals
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Real data: quality of disentanglement

For continuous phase data we have checked that A

Non-RSA-HRV = )
1F sSumofboth © Cam

Var(RSA-HRV)+Var(Non-RSA-HRV) & Var(HRV) || &%
as expected for non-correlated processes e s

0.01k : :
0.01 0.1 1

Var(HRV)

We now check 1t for point-process time series of R-peaks,
taking the phase to be piece-wise linear between the events,

@(t) =2nlT, FOR t;, <t < b

and obtaining N 2
, . 4r | N
O = VAR(QD(t)) — T ? — ? Tk’ TZ — Z Tk
2 k=1 \ 'k 72 k
We compute variance for 4 series of intervals:
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Real data: quality of disentanglement

For continuous phase ¢ e T
| RSA-HRV © &
Var(RSA-HRV)+V: 11 Non-RSA-HRV = '
as expected for non Sum of both ©
"
We now check 1t for pc §
taking the phase to be | ®©
. s O.1
P(t) = 2m>
and obtaining @
62 = VAR(@(1)) = -
0.01 ¥ e
We compute variance : 0.0 0.1 1

Var(HRV) ,



Real data: quality of disentanglement

For continuous phase data we have checked that [
Var(RSA-HRV)+Var(Non-RSA-HRV) & Var(HRV) { .| %{ﬁ‘é‘
as expected for non-correlated processes O

We now check 1t for point-process time series of R-peaks,

taking the phase to be piece-wise linear between the events,

and obtaining 2

, . 4’ & | N
62 = VAR(((f)) = — ——— | T, Ty = Z T,
Iz g\ e Iz k

We compute variance for 4 series of intervals:
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Real data: quality of disentanglement
@(t) =2nlT, FOR t;, <t < b1 o> = vAR(¢(1))
We compute variance for 4 series of intervals:

. 2 L
® variance O, for original intervals

: 2 . :
® variance Op . for continuously-cleansed respiratory-related

intervals,

: 2 : :
® variance Of . for map-cleansed respiratory-related intervals

® variance O ]%R ,, for map-cleansed non-respiratory-related
intervals

2 o~ 2
We check that: Op . = O

2 2 o 2
GR,m T GNR,m ~ O,
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Real data: quality of disentanglement

1
| O
1 <> sum of both

NR-HRV
R-HRV

variance for original intervals o

B /7
/Q O
| s O
N / @
B //
., =
/I III| ] IIIII| ] ] I I I
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O

5 |
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Real data: quality of disentanglement

° B y‘
variance for i e
i /7
map-cleansed R
: 2 A/
intervals, Op ..+ pd
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0.1 d
o AA
A /t“
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- A
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0.011 4
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Conclusions

® Dynamical disentanglement: A tool to extract variability
due to a certain rhythm

® Not a usual filter

® Can be used as a umiversal preprocessing tool in analysis of
heart rate variability, in particular for quantification of
respiratory sinus arrhythmia

46



References

B. Kralemann et al, “/n vivo cardiac phase response curve
elucidates human respiratory heart rate variability”, Nature
Communications, 4, p. 2418, 2013

C. Topcu et al, “Disentangling respiratory sinus arrhythmia in

heart rate variability records”, Physiological Measurements, 39,
p. 054002, 2018

M. Rosenblum and A. Pikovsky. “Efficient determination of

synchronization domains from observations of asynchronous
dynamics”, Chaos, 28, 106301, 2018

M. Rosenblum et al. “Dynamical disentanglement in an analysis
of oscillatory systems: an application to respiratory sinus
arrhythmia”, submitted

a7



