
Inferring network properties via phase 
dynamics modelling with application to 

Network Physiology

Michael Rosenblum 

Institute of Physics and Astronomy,  Potsdam University, Germany

Network Physiology Summer Institute, Como, 31.07.19 



Oscillatory networks as models for living systems
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sino-atrial 
node atria ventricles

van der Pol and van der Mark, 1928

Electrical model of the heart: three coupled relaxation oscillators



Oscillatory networks as models for living systems

�3

We consider networks of self-sustained oscillators



Self-sustained oscillators
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Active oscillators
Biology: systems generating endogenous rhythms

Systems of this class:
1

2

3

4

generate stationary oscillations without periodic forces

are dissipative nonlinear systems

are described by autonomous differential 
equations

are represented by a limit cycle 
in the phase space



Self-sustained oscillators: Examples

�5Animated images: www.netanimations.net

http://www.netanimations.net


Self-sustained oscillators: Examples
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1 periodic oscillators

Animated images: www.netanimations.net



Self-sustained oscillators: Examples
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2 Irregular oscillators (noisy/chaotic)

Animated images: www.netanimations.net



Main effect: Synchronization
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1

Animated images: www.netanimations.net

2 It appears due to their interaction

It is a property of self-sustained oscillators



Self-sustained oscillator: limit cycle and phase
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Phase is a variable that describes 
the motion along the limit cycle

and can be introduced:

1. on the limit cycle 

2. in the basin of attraction of the limit cycle

Phase is defined to obey the condition ·φ = ω = 2π/T
x2

x1
Stable limit cycle: an attractive  
closed curve in the phase space



Phase dynamics: the phase sensitivity function
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Suppose the oscillator is driven by 
weak perturbation p(t)  

Phase Sensitivity function, or 
Phase Response Curve (PRC)

Then ·φ = ω + Z(φ)p(t)

p(t)

Phase dynamics equation in the Winfree form
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PRC quantifies response (phase shift) of an oscillator to a perturbation  

Example: human circadian cycle

• Delay region: evening light shifts  
sleepiness later and

• Advance region: morning light  
shifts sleepiness earlier.

(Wikipedia; Kripke & Loving, 2001)

Example: neural PRCs

(Scholarpedia)

Phase response curve (PRC)

2⇡ 2⇡



Phase dynamics: the coupling function
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Consider two coupled oscillators 

Coupling function

Then ·φ1 = ω1 + Q(φ1, φ2)

Notice: Phase dynamics equation can be analytically derived 
             only in the limit of weak coupling

φ1 φ2

However: this equation is generally valid for quite strong  
                  coupling and the coupling function can be obtained  
                  numerically or reconstructed from data



Phase dynamics: the coupling function II
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Consider an 
oscillatory network φ1

φ2

φ3

φN

• Pairwise coupling in the full system:  

- first-order approximation: pairwise terms, like  
 
  

- high-order approximation: terms, depending on many 
phases, not only on the phases of directly coupled nodes

·φ1 = ω1 + Q12(φ1, φ2) + Q13(φ1, φ3) + …



Formulation of the problem
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• Data: we have signals measured from all units 

• Assumption 1: the units are self-sustained oscillators 

• Assumption 2: the interaction between the units is not too 
strong (phase modelling is justified)

1

2

3

n



Formulation of the problem II
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• Synchronization analysis: quantification of the strength of the 
interaction (degree of  the phase locking) 

• Connectivity analysis: recovery of the directed connectivity 
via reconstruction of phase dynamics from data 

• Model reconstruction: estimation of some parameters of the 
interacting units

To solve these tasks we have to consider separately two cases

1

2

3

n
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1

2

3

N

Formulation of the problem III

Case 1: oscillatory signals 
suitable for phase estimation 
from time series 

Case 2: pulse-like signals, 
only times of spikes can be 
reliably measured 
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How to treat case 1

• Estimate phases from time 
series, e.g. via the Hilbert 
Transform 

• Compute numerically 
derivatives ·φ

• Construct phase dynamics equations, e.g.                                 
                                              by fit (kerned density estimation, 
l.m.s. fit for Fourier harmonics, etc) 

• Analyse norms of all coupling functions to recover connectivity

·φ1 = ω1 + Q1(φ1, φ2, …)
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How to recover connectivity

• Three oscillators:  
 
 
Strength of the links is quantified by  
partial norms, e.g. for the link 

• Two oscillators: 
 
Strength of the connection             is given by norm  
Strength of the connection             is given by norm

·φ1 = ω1 + Q1(φ1, φ2)
·φ2 = ω2 + Q2(φ2, φ1)

2 → 1 ∥Q1∥
∥Q2∥1 → 2

1

23

·φ1 = ω1 + Q1(φ1, φ2, φ3) , …

,  where F are Fourier coefficients

Q1(φ1, φ2, φ3) = ∑
l1,l2,l3

Fl1,l2,l3 exp[i(l1φ1 + l2φ2 + l3φ3)]

2 → 1

𝒩2
1←2 = ∑

l1,l2≠0

Fl1,l2,0
2
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How to recover connectivity II

• More than three oscillators: use triplet analysis!

k

1

2

j

n

Compute partial norms for the desired link from all possible 
triplets and take the minimal value for the strength of the 
connection



Triplet analysis: why does it work?
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1

2

3

5 4

Triplet {1,3,5} yields spuriously 
large term             , because              
are correlated due to node 2

1 ! 3 �1,�3

Triplet {1,2,3} correctly explains  
correlation of               and yields a 
small value for the link 1 ! 3

�1,�31

2

3

5 4
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Intermediate summary
• Network of oscillatory units can be reconstructed if the signals 

are good for phase estimation 

• There is a number of technical details - see original publications 

• Matlab toolbox: 
www.stat.physik.uni-potsdam.de/~mros/damoco2.html 

• B. Kralemann et al, New Journal of Physics, 16, 085013, 2014 

• B. Kralemann et al, Nature Communications, 4, p. 2418, 2013 

• B. Kralemann et al, Chaos, 21, 025104, 2011 

• … and references therein



Case 2: Reconstructing networks of 
pulse-coupled oscillators from spike trains
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1

2

3

n

The data we measure are like sequences of spikes



Formulation of the problem
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The data we measure are like sequences of spikes

1

2

3

N

we can reliably detect only times of spikes

we reduce the data to point processes



Assumptions about the network
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• Weak interaction: phase description is justified  

• PRC of a unit is the same for all incoming connections  
PRCs of different units can differ!
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PRC quantifies response (phase shift) of an oscillator to a perturbation  

Example: human circadian cycle

• Delay region: evening light shifts  
sleepiness later and

• Advance region: morning light  
shifts sleepiness earlier.

(Wikipedia; Kripke & Loving, 2001)

Example: neural PRCs

(Scholarpedia)

Phase response curve (PRC)

2⇡ 2⇡



Assumptions about the network
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• Weak interaction: phase description is justified  

• PRC of a unit is the same for all incoming connections  
PRCs of different units can differ! 

• Coupling is bidirectional but generally asymmetric,  
"km 6= "mk

strength of the link from m to k



A simple model: integrate-and-fire units
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• Without interaction phases of all oscillators grow as 'k = !kt

'

2⇡

timephases are wrapped into            interval0, 2⇡



A simple model: integrate-and-fire units
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• Without interaction phases of all oscillators grow as  

• When phase of the oscillator k attains                  ,        
it issues a spike  

'k = !kt

2⇡

time

'k = 2⇡

'k

spikes affect all units with incoming connections from unit k 



A simple model: integrate-and-fire units
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• Without interaction phases of all oscillators grow as  

• When phase of the oscillator k attains                  ,        
it issues a spike 

• When unit j receives a spike from unit k, its phase is 
instantaneously reset according to its PRC            :             

'k = !kt

2⇡

'k = 2⇡

Zj(')

time

'j ! 'j + "jkZj('k)
'j



Our approach: iterative solution
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• We choose one oscillator (let it be the first one) and consider  
its all incoming connections  

• For this oscillator, we recover:  
- its frequency  
- its PRC 
- strength of all incoming connections 

• We achieve this in several iterative steps 

• Then we repeat the procedure for all other units

"1m



Our approach: Notations
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• Since we choose the first oscillator, we simplify notations by  
omitting one index   

• For this oscillator, we recover:  
- its frequency  
- its PRC 
- strength of all incoming connections "m,m = 2, . . . , N

!

Z(')



Notations II
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unit 1

unit 2

time
unit N

t(1)k�1
t(1)k+1 t(1)k+2t(1)k Tk

⌧ (2,1)
k ⌧ (2,2)

k

⌧ (N,1)
k

When the spike at           arrives, the phase of the first unit is⌧ (i,l)
k

'(t(1)k + ⌧ (i,l)
k ) = '(i,l)

k



Phase equation
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(1)

Phase increase within each inter-spike interval is 2⇡



Phase equation
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(1)

inter-spike interval
Network size

strength of incoming connections
PRC

Number of stimuli from unit i

Phase of the first unit when it receives the l-th spike from unit i, 
within the inter-spike interval number k

Phase increase within each inter-spike interval is 2⇡

natural frequency



Our approach: main idea
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(1)

• Suppose we know phases and coupling coefficients;  
then we represent the PRC as a finite Fourier series;  
thus, we obtain M linear equations (1), where M is  
the number of inter-spike intervals;  
for long time series it can be solved, e.g., by LMS fit 

• Suppose, vice versa, that we know phases and PRC;  
then we obtain a linear system to find coupling  
coefficients "j



Our approach: main idea
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(1)

Thus: •              are known                    we find        

•              are known                    we find 'k, Z

'k, "i

"i,!

Z,!



Our approach: iterative solution
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First estimate of 'k, "i

First estimate of 

Thus: •              are known                    we find        

•              is known                  we find 'k, Z

'k, "i

"i,!

Z,!

Z,!



Our approach: iterative solution
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Thus: •              are known                    we find Z        

•              is known                  we find 'k, Z "i

'k, "i

First estimate of 'k, "i

First estimate of 

Second estimate of 'k, "i

Z,!



Our approach: iterative solution
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Thus: •              are known                    we find Z        

•              is known                  we find 'k, Z "i

'k, "i

First estimate of 'k, "i

First estimate of

Second estimate of 'k, "i

Second estimate of

Third estimate of 'k, "i

…

Z,!

Z,!
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It looks like a fairy tale…

… but it works very good!



First estimate: phases
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Initial estimate: proportionally to time '(i,l)
k = 2⇡⌧ (i,l)

k /Tk

2⇡

Tktime

ph
as

e

estimate
true

phase reset "Z(')

Error of the initial estimate is of the order of "Z(')



First estimate: Coupling coefficients
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We have suggested an approach that 
works very good for a rather long time 
series, but we rarely use it, because

numerical tests demonstrate that iterations converge to the 
correct value even for random assignment of initial values     !"i

Tk

0 2⇡'(m,1)
k

0 1 2 3 4

6.26
6.28
6.30
6.32
6.34
6.36
6.38

φ

T



Next estimates: phases
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An example: within       there are three incoming stimuli at 
⌧ (i,1)
k < ⌧ (m,1)

k < ⌧ (n,1)
k

Tk

1st stimulus: '(i,1)
k = !⌧ (i,1)

k

'(m,1)
k = !⌧ (m,1)

k + "iZ('(i,1)
k )2nd stimulus:

3rd stimulus: '(n,1)
k = !⌧ (n,1)

k + "iZ('(i,1)
k ) + "mZ('(m,1)

k )

 = !Tk + "iZ('(i,1)
k ) + "mZ('(m,1)

k ) + "nZ('(n,1)
k )

At the end of the interval:

Our quantities are not precise                  generally  6= 2⇡

we rescale all estimated phases by 2⇡/ 



Next estimates: phases
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 = !Tk + "iZ('(i,1)
k ) + "mZ('(m,1)

k ) + "nZ('(n,1)
k )

At the end of the interval:

Our quantities are not precise                  generally  6= 2⇡

we rescale all estimated phases by 2⇡/ 

Thus, for each interval we can compute mismatch ψk − 2π

Standard deviation of                provides a measure forψk − 2π

quality of the reconstructed model

We use this measure to monitor convergence of our procedure!



Numerical tests
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Type I PRC Type II PRC

Model phase response curves

0 2 4 6
ϕ

0

0.2

0.4

0.6

Z(
ϕ)

0 2 4 6
ϕ

-0.4

-0.2

0

0.2
(b)(a)



Numerical test I
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Network size: N = 20

Natural frequencies: uniformly distributed between 1 and 2

Coupling coefficients: sampled from the positive part of a
Gaussian distribution with zero mean 
and std 0.02

(most difficult case)!1 = 1

We exclude the networks where at least two units synchronize! 

Reconstruction: 10 iterations, 10 Fourier harmonics

only 200 inter-spike intervals used

initial values "i = 1, 8i



Iterative solution: results, coupling strength
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Type I PRC Type II PRC

×
×
×

×
×
×

×
××

×

×

×

×
××

×
×

×

×

×

++
+

+
++

+
++

+

+

+

+
+
+

+
+

+

+

+

##

#

#

##

#
##

#

#

#

#

#

#

#

#

#

#

#

(a)

1 5 10 15 20

0

0.02

index i

ϵ i

×
×
×
×

××

×

×

×

×

×

×
×

××

×

××
××

++
+
+

++

+

+

+
+

+

+
+

++

+

++
++

#
#
#

#

#
#

#

#

#
#

#

#
#

##

#

#
#

##

(b)

1 5 10 15 20
index i

(c)

0 π 2 π

-0.4

0

0.6

φ

Z(
φ)

(d)

0 π 2 π
φ

(e)

1 2 3 4 5 6 7 8 9 10

1

1.005

iteration

ω

(f)

1 2 3 4 5 6 7 8 9 10
iteration

+
true values
first iteration
second iteration

10th iteration



Iterative solution: results, PRC
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Type I PRC Type II PRC
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One step towards realistic modelling:  
Morris-Lecar neurons
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with synaptic coupling
k
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Morris-Lecar network: results, coupling strength 
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true value after 10 iterations

only 200 inter-spike intervals are used!



Morris-Lecar network: results, PRC

�51

××
×

×

×

×

×
×
×

×
×

×

×

×

×

×

×
×

××

(a)

1 5 10 15 20

0

0.02

index i

ϵ i
(b)

0 π 2 π

0.0

1.0

φ

Z(
φ)

true PRC
10th iteration



�52

Conclusions

• Robust reconstruction of the network structure already for 
several hundreds of spikes; works if the network does not 
synchronize 

• If the coupling is not weak enough: the network reconstruction 
remains correct, the PRC is amplitude-dependent 

• We need some variability in the drive: noise helps here!


