

Inferring network properties via phase dynamics modelling with application to Network Physiology

Michael Rosenblum

Institute of Physics and Astronomy, Potsdam University, Germany

Network Physiology Summer Institute, Como, 31.07.19

Oscillatory networks as models for living systems

Electrical model of the heart: three coupled relaxation oscillators

van der Pol and van der Mark, 1928

Oscillatory networks as models for living systems

We consider networks of self-sustained oscillators

Self-sustained oscillators

Active oscillators

1

Biology: systems generating **endogenous** rhythms

Systems of this class:

3

4

- generate stationary oscillations without periodic forces
- **2** are dissipative nonlinear systems

- are described by autonomous differential equations
	- are represented by a limit cycle in the phase space

Self-sustained oscillators: Examples

Animated images: www.netanimations.net 5

Self-sustained oscillators: Examples

6

Animated images: www.netanimations.net

Self-sustained oscillators: Examples

Animated images: www.netanimations.net

Main effect: Synchronization

It is a property of **self-sustained oscillators**

2 It appears due to their **interaction**

1

Animated images: www.netanimations.net

Self-sustained oscillator: limit cycle and phase

Stable limit cycle: an attractive closed curve in the phase space

Phase is a variable that describes the motion along the **limit cycle**

Phase is defined to obey the condition ·

and can be introduced:

1. on the limit cycle

2. in the basin of attraction of the limit cycle

$$
\dot{\varphi} = \omega = 2\pi/T
$$

Phase dynamics: the phase sensitivity function

Phase response curve (PRC)

PRC quantifies response (phase shift) of an oscillator to a perturbation

Example: neural PRCs

(Scholarpedia)

Phase dynamics: the coupling function

Notice: Phase dynamics equation can be analytically derived only in the limit of weak coupling

However: this equation is generally valid for quite strong coupling and the coupling function can be obtained numerically or **reconstructed from data**

Phase dynamics: the coupling function II

Consider an *<u>oscillatory</u>* network

- Pairwise coupling in the full system:
	- first-order approximation: pairwise terms, like

$$
\dot{\varphi}_1 = \omega_1 + Q_{12}(\varphi_1, \varphi_2) + Q_{13}(\varphi_1, \varphi_3) + \dots
$$

- high-order approximation: *terms, depending on many phases*, not only on the phases of directly coupled nodes

Formulation of the problem

- Data: we have signals measured from all units
- Assumption 1: the units are **self-sustained** oscillators
- Assumption 2: the interaction between the units is not too strong (phase modelling is justified)

Formulation of the problem II

- Synchronization analysis: quantification of the strength of the interaction (degree of the phase locking)
- Connectivity analysis: recovery of the directed connectivity via reconstruction of phase dynamics from data
- Model reconstruction: estimation of some parameters of the interacting units

To solve these tasks we have to consider separately two cases

Formulation of the problem III

Case 1: oscillatory signals suitable for phase estimation from time series

Case 2: pulse-like signals, only times of spikes can be reliably measured

How to treat case 1

- Estimate phases from time series, e.g. via the Hilbert Transform
- Compute numerically derivatives · *φ*

- Construct phase dynamics equations, e.g. $\dot{\varphi}_1 = \omega_1 + Q_1(\varphi_1, \varphi_2, ...)$ by fit (kerned density estimation, l.m.s. fit for Fourier harmonics, etc) .
[$\dot{\varphi}_1 = \omega_1 + Q_1(\varphi_1, \varphi_2, ...)$
- Analyse norms of all coupling functions to recover connectivity

How to recover connectivity

• Two oscillators: $\dot{\phi}$ $\dot{\varphi}_1 = \omega_1 + Q_1(\varphi_1, \varphi_2)$

$$
\dot{\varphi}_2 = \omega_2 + Q_2(\varphi_2, \varphi_1)
$$

Strength of the connection $2 \rightarrow 1$ is given by norm $||Q_1||$ Strength of the connection $1 \rightarrow 2$ is given by norm $||Q_2||$

• Three oscillators:

$$
\dot{\varphi}_1 = \omega_1 + Q_1(\varphi_1, \varphi_2, \varphi_3) \dots
$$

Strength of the links is quantified by **partial norms,** e.g. for the link $2 \rightarrow 1$

 $\mathcal{N}_{1\leftarrow 2}^2 = \sum \left| F_{l_1,l_2,0} \right|$, where *F* are Fourier coefficients $Q_1(\varphi_1, \varphi_2, \varphi_3) = \sum F_{l_1, l_2, l_3} \exp[i(l_1\varphi_1 + l_2\varphi_2 + l_3\varphi_3)]$ *l* l_1, l_2, l 3 $l_1, l_2 \neq 0$ 2

How to recover connectivity II

• More than three oscillators: use triplet analysis!

Compute partial norms for the desired link from all possible triplets and take the minimal value for the strength of the connection

Triplet analysis: why does it work?

Triplet {1,3,5} yields spuriously large term $1 \rightarrow 3$, because φ_1, φ_3 are correlated due to node 2

Triplet {1,2,3} correctly explains $\begin{array}{|c|c|c|c|c|}\n\hline\n1 & 1\n\end{array}$ correlation of φ_1, φ_3 and yields a small value for the link $1 \rightarrow 3$

Intermediate summary

- Network of oscillatory units can be reconstructed if the signals are good for phase estimation
- There is a number of technical details see original publications
- Matlab toolbox:

www.stat.physik.uni-potsdam.de/~mros/damoco2.html

DAMOCO: Data Analysis with Models Of Coupled Oscillators

MATLAB Toolbox for multivariate times series analysis

Björn Kralemann, Michael Rosenblum, Arkady Pikovsky

- B. Kralemann et al, New Journal of Physics, **16,** 085013, 2014
- B. Kralemann et al, Nature Communications, **4,** p. 2418, 2013
- B. Kralemann et al, Chaos, 21, 025104, 2011
- … and references therein

Case 2: Reconstructing networks of pulse-coupled oscillators from spike trains

The data we measure are like **sequences of spikes**

Formulation of the problem

The data we measure are like **sequences of spikes**

we can reliably detect only times of spikes

we reduce the data to **point processes**

Assumptions about the network

- Weak interaction: phase description is justified
- PRC of a unit is the same for all incoming connections PRCs of different units can differ!

Phase response curve (PRC)

PRC quantifies response (phase shift) of an oscillator to a perturbation

Example: neural PRCs

(Scholarpedia)

Assumptions about the network

- Weak interaction: phase description is justified
- PRC of a unit is the same for all incoming connections PRCs of different units can differ!
- Coupling is bidirectional but generally asymmetric, $\varepsilon_{km} \neq \varepsilon_{mk}$

strength of the link from *m* to *k*

A simple model: integrate-and-fire units

• Without interaction phases of all oscillators grow as $\varphi_k = \omega_k t$

 $phases$ are wrapped into $0, 2\pi$ interval *time*

A simple model: integrate-and-fire units

- Without interaction phases of all oscillators grow as $\varphi_{\bm{k}} = \omega_{\bm{k}} t$
- When phase of the oscillator *k* attains $\varphi_k = 2\pi$, it **issues a spike** $\varphi_{\bm{k}} = 2\pi$

spikes affect all units with incoming connections from unit *k*

A simple model: integrate-and-fire units

- Without interaction phases of all oscillators grow as $\varphi_{\bm{k}} = \omega_{\bm{k}} t$
- When phase of the oscillator *k* attains $\varphi_k = 2\pi$, it **issues a spike** $\varphi_{\bm{k}} = 2\pi$
- When unit *^j* **receives** a spike from unit *k*, its phase is instantaneously reset according to its PRC $Z_j(\varphi)$:

Our approach: iterative solution

- We choose one oscillator (let it be the first one) and consider its all incoming connections ε_{1m}
- For this oscillator, we recover:
	- its frequency
	- its PRC
	- strength of all incoming connections
- We achieve this in several iterative steps
- Then we repeat the procedure for all other units

Our approach: Notations

- Since we choose the first oscillator, we simplify notations by omitting one index
- For this oscillator, we recover:
	- its frequency $\boldsymbol{\omega}$
	- $-$ its PRC $Z(\varphi)$
	- strength of all incoming connections $\epsilon_m, m = 2, \ldots, N$

When the spike at $\tau_k^{(i,l)}$ arrives, the phase of the first unit is $\boldsymbol{\varphi}(t$ $\left(\frac{1}{k} + \tau_k^{(i,l)}\right) = \varphi_k^{(i,l)}$

Phase equation

Phase increase within each inter-spike interval is 2π

$$
\omega T_k + \sum_{i=2}^N \varepsilon_i \sum_{l=1}^{n_k(i)} Z(\varphi_k^{(i,l)}) = 2\pi
$$

(1)

Phase equation

Phase increase within each inter-spike interval is 2π

Our approach: main idea

$$
\omega T_k + \sum_{i=2}^N \varepsilon_i \sum_{l=1}^{n_k(i)} Z(\varphi_k^{(i,l)}) = 2\pi \quad (1)
$$

- Suppose we know phases and coupling coefficients; then we represent the PRC as a finite Fourier series; thus, we obtain *M* linear equations (1), where *M* is the number of inter-spike intervals; for long time series it can be solved, e.g., by LMS fit
- Suppose, vice versa, that we know phases and PRC; then we obtain a linear system to find coupling coefficients ε ^{*j*}

Our approach: main idea

$$
\omega T_k + \sum_{i=2}^N \varepsilon_i \sum_{l=1}^{n_k(i)} Z(\varphi_k^{(i,l)}) = 2\pi
$$

Thus:
•
$$
\varphi_k, \varepsilon_i
$$
 are known
• φ_k, Z are known
• we find ε_i, ω

(1)

Our approach: iterative solution Thus: $\bullet \varphi_k, \varepsilon_i$ are known we find • φ_k, Z is known we find φ_k, ε_i are known we find Z, ω $\varepsilon_{\bm{i}}, \omega$

First estimate of φ_k, ε_i

Our approach: iterative solution

Thus: $\bullet \varphi_k, \varepsilon_i$ are known we find Z $\overline{\varphi_k}, \overline{\varepsilon_i}$

• φ_k , Z is known we find ε_i

First estimate of φ_k, ε_i

First estimate of $\boldsymbol{Z,\omega}$

Second estimate of φ_k, ε_i

Our approach: iterative solution

Thus: $\bullet \varphi_k, \varepsilon_i$ are known we find Z • φ_k , Z is known we find ε_i $\overline{\varphi_k}, \overline{\varepsilon_i}$

First estimate of φ_k, ε_i

First estimate of $\boldsymbol{Z,\omega}$

…

Second estimate of φ_k, ε_i

Third estimate of φ_k, ε_i

Second estimate of Z, w

It looks like a fairy tale…

… but it works very good!

Baron Munchausen is a fictional German nobleman created by the German writer Rudolf Erich Raspe in his 1785 book Baron Munchausen's Narrative of his Marvellous Travels and Campaigns in Russia.

First estimate: phases

Initial estimate: proportionally to time $\varphi_k^{(i,l)} = 2\pi \tau_k^{(i,l)}/T_k$

Error of the initial estimate is of the order of $\epsilon Z(\varphi)$

First estimate: Coupling coefficients

We have suggested an approach that works very good for a rather long time series, but we rarely use it, because

numerical tests demonstrate that iterations converge to the correct value even for random assignment of initial values ε_i !

Next estimates: phases

 $\tau_k^{(i,1)} < \tau_k^{(m,1)} < \tau_k^{(n,1)}$

An example: within T_k there are three incoming stimuli at

1st stimulus: $\varphi_k^{(i,1)} = \omega \tau_k^{(i,1)}$

2nd stimulus: $\varphi_k^{(m,1)} = \omega \tau_k^{(m,1)} + \varepsilon_i Z(\varphi_k^{(i,1)})$

3rd stimulus: $\varphi_k^{(n,1)} = \omega \tau_k^{(n,1)} + \varepsilon_i Z(\varphi_k^{(i,1)}) + \varepsilon_m Z(\varphi_k^{(m,1)})$

At the end of the interval:

 $\psi = \omega T_k + \varepsilon_i Z(\varphi_k^{(i,1)}) + \varepsilon_m Z(\varphi_k^{(m,1)}) + \varepsilon_n Z(\varphi_k^{(n,1)})$

Our quantities are not precise generally $\psi \neq 2\pi$

we rescale all estimated phases by $2\pi/\psi$

Next estimates: phases

Numerical tests

Model phase response curves

Type I PRC Type II PRC

Numerical test I

Network size: $N = 20$

Natural frequencies: uniformly distributed between 1 and 2 $\omega_1 = 1$ (most difficult case)

Coupling coefficients: sampled from the positive part of a Gaussian distribution with zero mean and std 0.02

We exclude the networks where at least two units synchronize!

Reconstruction: 10 iterations, 10 Fourier harmonics only 200 inter-spike intervals used initial values $\varepsilon_i = 1$, $\forall i$

Iterative solution: results, coupling strength Type I PRC Type II PRC

- true values
- + first iteration
- X second iteration
- 10th iteration

Iterative solution: results, PRC Type I PRC Type II PRC erative soluti erative soluti tion: res Γ ₁₀₀ Γ ₁₀₀ Γ ₁₀ Γ $\overline{\mathbf{r}}$ esults, PRC $\overline{ }$ $\overline{1}$ esults, PRC anlte l $\overline{\mathcal{L}}$

true PRC

(e)

- first iteration
- second iteration
	- 10th iteration

One step towards realistic modelling: Morris-Lecar neurons

$$
\dot{V}_i = I_i - g_l(V_i - V_l) - g_K w_i (V_i - V_k) \n- g_{Ca} m_{\infty}(V_i) (V_{Ca} - V_i) + I_i^{\text{(syn)}}, \n\dot{w}_i = \lambda(V_i) (w_{\infty}(V_i) - w_i) , \nm_{\infty}(V) = [1 + \tanh (V - V_1/V_2)]/2 , \nw_{\infty}(V) = [1 + \tanh (V - V_3/V_4)]/2 , \n\lambda(V) = \cosh [(V - V_3/V_4)]/2
$$

 $\lambda(V) = \cosh[(V - V_3)/(2V_4)]/3$,

with synaptic coupling
$$
I_i^{(\text{syn})} = [V_{\text{rev}} - V_i] \sum_{k, k \neq i} \frac{\varepsilon_{ik}}{1 + \exp[-(V_{\mathbf{k}} - V_{\text{th}})/\sigma]}
$$

Morris-Lecar network: results, coupling strength

Morris-Lecar network: results, PRC ric I goor notworks rosults DDC

Conclusions

- Robust reconstruction of the network structure already for several hundreds of spikes; works if the network does not synchronize
- If the coupling is not weak enough: the network reconstruction remains correct, the PRC is amplitude-dependent
- We need some variability in the drive: noise helps here!

PHYSICAL REVIEW E 96, 012209 (2017)

Reconstructing networks of pulse-coupled oscillators from spike trains

Rok Cestnik^{1,2,} and Michael Rosenblum^{1,3,†}

SMO

Complex Oscillatory Systems: Modeling and Analysis Innovative Training Network European Joint Doctorate

