

ISINP 2019 Como - 2.8.2019

An information-theoretic framework to dissect multivariate and multiscale physiological interactions

Luca Faes

University of Palermo, Italy

Multivariate Interactions: *Information Dynamics*

Multiscale Interactions: *State Space Models*

Physiological Interactions:

Brain: epilepsy Cardiovascular Physiology

1

INFORMATION DYNAMICS

• **Investigation of Statistical dependencies:**

 SELF effects: CAUSAL effects: \checkmark INTERACTION effects: $(X_{1,n}^-\leftrightarrow X_{2,n}^-)\to Y_n$ \longrightarrow Information modification $Y_n^- \to Y_n$ $X_n^- \to Y_n$ **Information storage Information transfer**

INFORMATION DECOMPOSITION

• **Decomposition of the "information" contained in the target process**

• **Computation: basic information theoretic measures**

TARGET INFORMATION DECOMPOSITION

- **Present Information** about $Y : H_Y = H(Y_n)$ Information contained in the present of the process *Y*
- **Predictive Information** about $Y: P_Y = I(Y_n; Y_n^-, X_n^-)$ Information contained in the past of $S=(X,Y)$ that can be used to predict the present of the target *Y* $P_Y = I(Y_n; Y_n^-, X_n^-)$
- **New information** about $Y: N_Y = H(Y_n | Y_n^-, X_n^-)$

Information contained in the present of *Y* that cannot be predicted from the past of *S*=(*X*,*Y*)

Uncertainty about the present state of the target

Predictability of the target given the past network states

Information generated in the target by the state transition

PREDICTIVE INFORMATION DECOMPOSITION

- **Predictive Information** about $Y: P_Y = I(Y_n; Y_n^-, X_n^-)$ Information contained in the past of *S*=(*X*,*Y*) that can be used to predict the present of the target *Y* $P_Y = I(Y_n; Y_n^-, X_n^-)$
- **Information Storage** in $Y: S_Y = I(Y_n; Y_n^{-})$ $S_Y = I(Y_n; Y_n)$

Information contained in the past of *Y* that can be used to predict its present

• Information transfer from X to $Y: T_{X\rightarrow Y} = I(Y_n; X_n^- | Y_n^-)$ $T_X \rightarrow Y = I(Y_n; X_n^- | Y_n^-)$

Information contained in the past of *X* that can be used to predict the present of *Y* above and beyond the information contained in the past of *Y*

- *Predictability of the target given the network past states*
	- *Predictability of the target from its own past states*
		- *Causal interactions from all sources to the target*

→

INFORMATION TRANSFER DECOMPOSITION

• **Joint information transfer**: $T_{X_1, X_2 \to Y} = I(Y_n; X_{1,n}^-, X_{2,n}^- | Y_n^-)$ $T_{X_1, X_2 \to Y} = I(Y_n; X_{1,n}^-, X_{2,n}^- | Y_n^-)$

Information contained in the past of X_1, X_2 that can be used to predict the present of *Y* above and beyond the information contained in the past of *Y*

• Individual information transfer: $T_{X_1 \to Y} = I(Y_n; X_{1,n}^- \mid Y_n^-)$ $-1V^ T_{X_1 \to Y} = I(Y_n; X_{1,n}^- \mid Y_n^-$

Information contained in the past of X_1 that can be used to predict the present of *Y* above and beyond the information contained in the past of *Y* (and of X_2)

• Interaction information transfer: $I_{X_1;X_2}^Y = I(Y_n;X_{1,n}^-,X_{2,n}^- \,|\, Y_n^-)$ $= I(Y_n; X_{1,n}^-, X_{2,n}^- | Y_n^-$ *Y* $I_{X_1; X_2}^Y = I(Y_n; X_{1,n}^-; X_{2,n}^- | Y_n$

Information contained in the past of X_1 and X_2 that can be used to predict the present of Y when X_1 and X_2 are taken individually but not when they are taken together

Causal interactions from all sources to the target

Causal interactions from one source to the target

Redundant or synergistic interactions contributing to transfer

INFORMATION MODIFICATION: REDUNDANCY AND SYNERGY

Interaction information can be positive or negative

• **PARTIAL INFORMATION DECOMPOSITION (PID)**

$$
T_{X_1, X_2 \to Y} = U_{X_1 \to Y} + U_{X_2 \to Y} + R_{X_1; X_2}^Y + S_{X_1; X_2}^Y
$$

\n
$$
T_{X_1 \to Y} = U_{X_1 \to Y} + R_{X_1; X_2}^Y, \quad T_{X_2 \to Y} = U_{X_2 \to Y} + R_{X_1; X_2}^Y
$$

\n• Minimum mutual information PID: $R_{Y \to Y}^Y = \min\{T_{X_1 \to Y}, T_{X_2 \to Y}\}$

[A.B. Barrett, Phys. Rev. E 91, 2015] $\sum_{i=1}^{n} X_i = \min\{I_{X_1}\rightarrow Y, I_{X_2}\rightarrow Y\}$ $R^I_{X_1;X_2} = \min\{T_{X_1\rightarrow Y}, T_{X_2\rightarrow Y}\}$

Relation with interaction information:

$$
I_{X_1;X_2}^Y = S_{X_1;X_2}^Y - R_{X_1;X_2}^Y
$$

[P.L. Williams & R.D. Beer, ArXiv 1004.2515, 2010]

THE FRAMEWORK OF INFORMATION DYNAMICS

L Faes, A Porta, G Nollo, 'Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics', Entropy, special issue on "Entropy and *Cardiac Physics"***, 2015**, 17:277-303.

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks', *Entropy, special issue on Multivariate Entropy Measures and their applications*, 2017, 19(1), 5

THE FRAMEWORK OF INFORMATION DYNAMICS

L Faes, A Porta, G Nollo, 'Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics', Entropy, special issue on "Entropy and *Cardiac Physics"***, 2015**, 17:277-303.

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks', *Entropy, special issue on Multivariate Entropy Measures and their applications*, 2017, 19(1), 5

- Many physical processes exhibit dynamics spanning multiple temporal scales
- **[M Costa et al, Phys. Rev. Lett. 89, 2002]** • Multiscale methods to study individual dynamics are well established
- Multiscale computation of information transfer is non-trivial

time scale 5 time scale 12 time scale $1 \in \mathbb{N}$ \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} A [?] AMAN **?** hunt that SC, TE My

- We propose **a formal extension of information decomposition to multiscale analysis** of jointly stationary multivariate linear processes (VAR)
- Formulations based on VARMA representation and state-space (SS) modeling, leading to **exact computation** of information dynamics from VAR parameters

L Faes, S Stramaglia, G Nollo, D Marinazzo 'Multiscale Granger causality', *Phys Rev E 96*, 042150, 2017

MULTISCALE ANALYSIS OF TIME SERIES: CHANGE OF TIME SCALE

• **Traditional procedure for rescaling**

$$
Y_n = \{x_n, y_n\} \quad n = 1,..., N
$$

**RESCALING (scale factor τ):

$$
\overline{Y}_n = \{\overline{x}_n, \overline{y}_n\}, \quad n = 1,..., N/\tau
$$

$$
\overline{x}_n = \frac{1}{\tau} \sum_{l=0}^{\tau-1} x_{n\tau-l} , \quad \overline{y}_n = \frac{1}{\tau} \sum_{l=0}^{\tau-1} y_{n\tau-l}
$$**

Example:

[M Costa et al, Phys. Rev. Lett. 89, 2002]

• **Rescaling can be seen as a two-step procedure**

$$
\bar{x}_1 = \frac{1}{\tau} \sum_{l=0}^{\tau-1} x_{n\tau-l}, \quad \bar{y}_n = \frac{1}{\tau} \sum_{l=0}^{\tau-1} y_{n\tau-l}
$$
\n[**M** Costa et al, Phys. Rev. Lett. 89, 2002]
\n[**M** Costa et al, Phys. Rev. Lett. 89, 2002]
\n**Rescaling can be seen as a two-step procedure**
\n
$$
Y_n = \{x_n, y_n\} \quad n = 1,..., N
$$
\n**Example:**
\n
$$
\tilde{Y}_n = \frac{1}{\tau} \sum_{l=0}^{\tau-1} Y_{n-l}, \quad n = \tau,..., N
$$
\n**Example:**
\n
$$
\tilde{Y}_n = \frac{1}{\tau} \sum_{l=0}^{\tau-1} Y_{n-l}, \quad n = \tau,..., N
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 - x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n**Example:**
\n
$$
\tilde{X} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 - x_3}
$$
\n

MULTISCALE REPRESENTATION OF LINEAR PROCESSES USING STATE SPACE MODELS

¹[Aoki & Havenner, Econ. Rev. 10, 1991] ²[Solo, ArXiv 1501.04663, 2015] ³[Barnett & Seth, Phys. Rev. E 91, 2015]

The State Space model defining the multivariate linear process after rescaling can be obtained from the original VAR parameters and the scale factor

EXACT COMPUTATION OF INFORMATION TRANSFER FOR LINEAR PROCESSES BASED ON STATE SPACE MODELS

Computation of the partial variance of the target process y_i given a subset of processes Y_a

• **Submodels containing only the target, the target and one source, and the target and both sources**

$$
\frac{d}{dz}\left[\frac{SS(A, C, K, V)}{\overline{z}_{n+1} = \overline{A}\overline{z}_n + \overline{K}\overline{z}_n} \right] \xrightarrow{\overline{z}_{n+1} = \overline{A}\overline{z}_n + \overline{K}^{(a)}, \overline{Q}^{(a)}, \overline{R}^{(a)}, \overline{S}^{(a)})} \right] \xrightarrow{\overline{z}_{n+1} = \overline{A}\overline{z}_n + \overline{K}^{(a)}\overline{z}_n}
$$
\n
$$
\frac{\overline{z}_{n+1} = \overline{A}\overline{z}_n + \overline{K}^{(a)}\overline{z}_n}{\overline{y}_n^{(a)} = \overline{C}^{(a)}\overline{z}_n + \overline{E}_n^{(a)}}
$$
\nSubmodels containing only the target, the target and one source, and the target and both sources

\n
$$
\cdot a = j
$$
\n
$$
\cdot a = j, i
$$
\n
$$
\lambda j|j
$$
\n
$$
\cdot a = j, k
$$
\n
$$
\lambda j|ji
$$
\n
$$
\lambda j|jk
$$
\n
$$
T_{i \rightarrow j} = \frac{1}{2} \ln \frac{\lambda_{j}}{\lambda_{j|ji}}
$$
\n
$$
T_{i \rightarrow j} = \frac{1}{2} \ln \frac{\lambda_{j|j}}{\lambda_{j|ji}}
$$
\nInformation transfer in multivariate linear processes can be computed at any scale τ from the original VAR parameters

\n
$$
\frac{1}{2} \lambda_{j} = \frac{1}{2} \ln \frac{\lambda_{j}}{\lambda_{j|jk}}
$$
\n
$$
\frac{1}{2} \lambda_{j} = \frac{1}{2} \ln \frac{\lambda_{j}}{\lambda_{j|jk}}
$$
\n
$$
\frac{1}{2} \lambda_{j} = \frac{1}{2} \ln \frac{\lambda_{j|j}}{\lambda_{j|jk}}
$$
\n
$$
\frac{1}{2} \lambda_{j} = \frac{1}{2} \ln \frac{\lambda_{j|j}}{\lambda_{j|jk}}
$$
\n
$$
\frac{1}{2} \lambda_{j} = \frac{1}{2} \ln \frac{\lambda_{j|j}}{\lambda_{j|jk}}
$$
\n
$$
\frac{1}{2} \lambda_{j} = \frac{1}{2} \ln \frac{\lambda_{j|j
$$

Information transfer in multivariate linear processes can be computed

STUDY OF BRAIN AND PHYSIOLOGICAL NETWORKS IN EPILEPSY

- **The cortical activity changes drastically during an epileptic seizure** *EEG*
- **The study of brain networks during epilepsy may help in seizure prediction or detection**
- **Seizures influences also the peripheral ANS response**
- **Recent works studied the correlation between the epileptic neural network and the autonomic nervous system**

[K. Schiecke et al., IEEE Trans. Biomed Eng. 63, 2016]

Application of multiscale partial information decomposition to brain networks and networks of brain-heart interactions during epilepsy

APPLICATIONS (1a)

MULTISCALE INFORMATION TRANSFER IN THE EPILEPTIC BRAIN

- **Intracranial EEG from a patient with intractable epilepsy (focal seizures, 8 episodes) [MA Kramer et al., Epilepsy Res. 79, 2008]**
- **Grid of 8 x 8 cortical electrodes + 2 deep electrodes (left hippocampal region)**
- **10-sec time windows before seizure onset (pre-ictal) and during the seizure (ictal)**
- **Multiscale Partial Information Decomposition:**
	- model order: Bayesian Information Criterion (average *p*=14)
	- lowpass FIR filter with *q*=12 coeffs
	- Scale $\tau = 1,...,12$ (cutoff freq. $f_{\tau} = 200$ Hz, ..., 16.6 Hz)
	- Computation of PID transfer functions *from the two deep electrodes to each cortical electrode*

 $T_{ik \to j} = U_{i \to j} + U_{k \to j} + R_{ik \to j} + S_{ik \to j}$

 $i =$ deep 11, $k =$ deep 12; $j = 1, \ldots, 64$

APPLICATIONS (1a)

MULTISCALE INFORMATION TRANSFER IN THE EPILEPTIC BRAIN

- Increased information transfer during seizure
- Similar patterns of joint TE, TE
- Increased synergistic and redundant TE
- Increased unique TE **only from deep electrode 12** *useful for seizure localization*

L Faes, D Marinazzo , S Stramaglia 'Multiscale Information decomposition: exact computation for multivariate gaussian processes', *Entropy 19*, 408, 2017

PARTIAL INFORMATION DECOMPOSITION IN EPILEPTIC BRAIN-HEART INTERACTIONS

• **Bivariate Information Transfer** • **Partial Information Decomposition**

Brain-heart interactions in epilepsy: RESULTS

• **Brain-Heart Information Transfer**

- *The information transfer is markedly higher along the brainheart direction*
- *No evident differences are observed between and waves, pre-ictal and post-ictal phases, or contralateral and ipsilateral sites*

L Faes, R Pernice, M Feucht, K Schiecke, 'Partial Information decomposition of brain-heart interactions in temporal lobe epilepsy in the childhood', **Proc. of the 41th Conf. IEEE-EMBS**, 2019; in press.

Brain-heart interactions in epilepsy: RESULTS

• **Partial information decomposition of brainheart information transfer**

- *The unique information transfer is mostly ipsilateral in the pre-ictal phase and contralateral during the seizure and in the post-ictal phase*
- *These findings document the importance of PID, which removes from the information transfer the redundancy between the EEG activity of the two hemispheres*

L Faes, R Pernice, M Feucht, K Schiecke, 'Partial Information decomposition of brain-heart interactions in temporal lobe epilepsy in the childhood', **Proc. of the 41th Conf. IEEE-EMBS**, 2019; in press.

Applications: CARDIOVASCULAR and CARDIORESPIRATORY INTERACTIONS

• **Multiscale Partial Information Decomposition:**

Sympathetic and parasympathetic systems act at different time scales

MULTISCALE CARDIOVASCULAR INFORMATION DECOMPOSITION

• *Protocol: 61 young healthy subjects during head-up tilt and mental stress tasks*

• *Signals and time series:*

• *Multiscale information decomposition:*

 $T_{\text{SAP.}RESP\rightarrow HP} = U_{\text{SAP}\rightarrow HP} + U_{\text{RESP}\rightarrow HP} + R_{\text{SAP,}RESP\rightarrow HP} + S_{\text{SAP,}RESP\rightarrow HP}$

- model order: Bayesian Information Criterion (average *p*=14)
- lowpass FIR filter with $q=12$ coeffs
- Scale $\tau = 1, ..., 12$

MULTISCALE CARDIOVASCULAR INFORMATION DECOMPOSITION

J Krohova, **L Faes**, B Czippelova, Z Turianikova, N Mazgutova, R Pernice, A Busacca, D Marinazzo, S Stramaglia, M Javorka 'Multiscale information decomposition dissects control mechanisms of heart rate variability at rest and during physiological Stress', **Entropy**, 2019; 21:526.

- **Limits of linear multiscale information dynamics**
	- **The linear representation is restricted to AR processes**
	- **The model cannot account for long range correlations**
- **Linear multiscale analysis based on fractionally integrated AR models**

Observed time series

ARFI (p, d)	\n $A(L) = 1 - \sum_{i=1}^{p} A_i L^i$,\n $(1 - L)^d = \sum_{k=1}^{\infty} G_k L^k \approx \sum_{k=1}^{r} G_k L^k \equiv G(L)$ \n
FILTERING B(L) $X_n = E_n$	\n $\overline{H1} = \sum_{i=1}^{p} A_i L^i$,\n $(1 - L)^d = \sum_{k=1}^{\infty} G_k L^k \approx \sum_{k=1}^{r} G_k L^k \equiv G(L)$ \n
REscaled time series SAMPLING B(L) $X_n = D(L)X_n$	\n $\overline{X}_n = D(L)X_n$ \n $\overline{X}_{n+1} = \widetilde{B}Z_n + \widetilde{K}Z_n$ \n $\overline{X}_{n+1} = \widetilde{B}Z_n + \widetilde{K}Z_n$ \n $\overline{X}_{n+1} = \overline{B}X_n + \overline{W}_n$ \n $\overline{X}_{n+1} = \overline{B}X_n + \overline{W}_n$ \n $\overline{X}_{n+1} = \overline{B}Z_n + \overline{W}_n$ \n $\overline{X}_n = \overline{C}Z_n + \overline{V}_n$ \n $\overline{X}_n = \overline{C}Z_n + \overline{V}_n$ \n $\overline{X}_n = \overline{C}Z_n + \overline{V}_n$ \n $\overline{X}_n = \overline{C}Z_n + \overline{E}_n$ \n $\overline{X}_n = \overline$

L Faes, MA Pereira, R Pernice, M Javorka, ME Silva, AP Rocha 'Multiscale information storage of linear long-range correlated stochastic processes', **Physical review E***,* 2019, 99:032115

23

Multiscale information storage in cardiovascular physiology

- Experimental Protocol
	- *HEAD-UP TILT*
		- *61 Healthy subjects (37 females, 17.5 2.4 years)*

Construction of beat-to-beat variability series

Data analysis • *Stationary windows of N=300 beats*

• *ARFI identification: computation of d with Whittle semiparametric estimator computation of A(L) with least squares, order p with BIC criterion*

24

L Faes, MA Pereira, R Pernice, M Javorka, ME Silva, AP Rocha 'Multiscale information storage of linear long-range correlated stochastic processes', **Physical review E***,* 2019, 99:032115

• from supine to upright:

 \uparrow S_{χ} at short scales

• from supine to upright:

S^X **at short scales**

Increase of regularity of heart rate variability with tilt

• from supine to upright: *S^X* **at short scales**

\downarrow S_{*x*} at long scales

Higher complexity of heart rate variability with tilt, related to long-range correlations

- from supine to upright:
	- \uparrow S_{χ} at scale 1
	- \downarrow S_{*X*} at scales >1

• from supine to upright:

\uparrow S_{Y} at scale 1

\Leftrightarrow S_X at scales >1

Lower complexity of SAP associated with short term dynamics (respiratory?)

- from supine to upright:
	- \downarrow S_{*X*} at scales >1

\leftrightarrow S_{*X*} at scale 1

Higher complexity of SAP associated with slow oscillations (sympathetic?)

CONCLUSION

"An information-theoretic framework to dissect multivariate and multiscale physiological interactions"

The ability to **handle multivariate and multiscale dynamics** and the **general applicability** should make the proposed tool useful in many contexts within the field of Network Physiology