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• Investigation of Statistical dependencies:

 SELF effects:

 CAUSAL effects:

 INTERACTION effects: nnn YXX   )( ,2,1

nn YY 

nn YX 

Physiological Networks Networks of Dynamical systems

• Dynamic Process S

X

S
Y

…
Z

• With reference to a target system Y :

S={X1,...,XM-1 , Y} = {X,Y}X={X1,...,XM-1}

• Dynamic System S={S1,...,SM}

Information storage

Information transfer

Information modification

INFORMATION DYNAMICS
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Storage

Modification
Transfer

},,{},{ 21 YXXYXS 

X1

Y

X

New

Target information

• Decomposition of the “information” contained in the target process

Transfer

X2

YYXXYXYXYY NITTSH   2121

Information

connectivity

interaction

activity

Information Storage

Information Transfer

New Information
non-predictable dynamics

Information Modification

INTERACTION INFORMATION:

),;();();();;( WUVIWVIUVIWUVI 

MUTUAL INFORMATION:

)|()();( UVHVHUVI 

),|()|()|;( WUVHWVHWUVI 

CONDITIONAL ENTROPY:ENTROPY:

)]([log)( vpVH  )(),()|( UHUVHUVH 

• Computation: basic information theoretic measures

INFORMATION DECOMPOSITION
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)( nY YHH • Present Information about Y :

Information contained in the present of the process Y

),|(  nnnY XYYHN• New information about Y :

• Predictive Information about Y :

Information contained in the past of S=(X,Y) that can be used

to predict the present of the target Y

),;(  nnnY XYYIP

),|(),;()(   nnnnnnn YYHYYIYH XX

Predictive 
Information 

YP YN
New created 
Information 

YH

Information 

Uncertainty about the
present state of the target

Information generated in the target
by the state transition

Predictability of the target
given the past network states

Information contained in the present of Y that cannot be

predicted from the past of S=(X,Y)

TARGET INFORMATION DECOMPOSITION
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Information contained in the past of X that can be used to predict the
present of Y above and beyond the information contained in the past of Y

Predictive 
Information 

YP

)|;();(),;(   nnnnnnnn YYIYYIYYI XX

YS
Information 

Transfer

YXT 
Information 

Storage

• Information Storage in Y :

Information contained in the past of Y that can be used

to predict its present

);(  nnY YYIS

• Information transfer from X to Y : )|;( 
  nnnYX YXYIT

• Predictive Information about Y :

Information contained in the past of S=(X,Y) that can be used to
predict the present of the target Y

),;(  nnnY XYYIP
Predictability of the target
given the network past states

Predictability of the target
from its own past states

Causal interactions from all
sources to the target

PREDICTIVE INFORMATION DECOMPOSITION
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• Individual information transfer:

Information contained in the past of X1 that can be used to predict the present
of Y above and beyond the information contained in the past of Y (and of X2)

• Interaction information transfer:

)|;;()|;()|;()|;( ,2,1,2,1
  nnnnnnnnnnnnn YXXYIYXYIYXYIYYI X

Information 
Transfer

YXT 

)|;( ,11


  nnnYX YXYIT

)|;;( ,2,1; 21

 nnnn
Y
XX

YXXYII

YXT 1 YXT 2

Individual information transfer Interaction
Information 

Transfer

Y
XX

I
21;

Information contained in the past of X1,X2 that can be used to predict the
present of Y above and beyond the information contained in the past of Y

• Joint information transfer: )|,;( ,2,1, 21


  nnnnYXX YXXYIT

Causal interactions from all
sources to the target

Causal interactions from
one source to the target

Redundant or synergistic
interactions contributing to
transfer

Information contained in the past of X1 and X2 that can be used to predict

the present of Y when X1 and X2 are taken individually but not when they are

taken together

INFORMATION TRANSFER DECOMPOSITION
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REDUNDANCY:

• Interpretation of Information Modification:

SYNERGY:

)(
212121

,; YXYXYXX
Y
XX

TTTI  

YXYXYXX TTT  
2121, 0

21;
Y

XX
I

YXXT 21,

Interaction information can be positive or negative

YXYXYXX TTT  
2121, 0

21;
Y

XX
I

YXXT 21,

• PARTIAL INFORMATION DECOMPOSITION (PID)

[A.B. Barrett, Phys. Rev. E 91, 2015]

[P.L. Williams & R.D. Beer, ArXiv 1004.2515, 2010]

• Minimum mutual information PID:

YXXT 21, Y
XX

Y
XXYXYXYXX SRUUT

21212121 ;;,  

Y
XXYXYX

Y
XXYXYX RUTRUT

21222111 ;;
,  

Y
XX

Y
XX

Y
XX

RSI
212121 ;;;



},min{
2121; YXYX

Y
XX

TTR 

Relation with interaction information:

INFORMATION MODIFICATION: 
REDUNDANCY AND SYNERGY
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L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular
networks', Entropy, special issue on Multivariate Entropy Measures and their applications, 2017, 19(1), 5

Storage

ModificationTransfer

New

Target information

Transfer

X1

Y

X

X2

L Faes, A Porta, G Nollo, 'Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics', Entropy, special issue on “Entropy and
Cardiac Physics”, 2015, 17:277-303.

Y
XXYXYXYYYXYYYYY ITTSNTSNPNH

2121 ;
 

causal connectivity interaction between systems

Information TransferNew Information
unpredictable dynamics

Information Modification

Predictive Interaction
Transfer

Individual Transfer

predictable activity

Information StorageInformation direct causal connectivity

THE FRAMEWORK OF INFORMATION DYNAMICS
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L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular
networks', Entropy, special issue on Multivariate Entropy Measures and their applications, 2017, 19(1), 5

causal connectivity interaction between systems

Information TransferNew Information
unpredictable dynamics

Information Modification

Predictive Redundant
Transfer

Unique Transfer

predictable activity

Information StorageInformation

L Faes, A Porta, G Nollo, 'Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics', Entropy, special issue on “Entropy and
Cardiac Physics”, 2015, 17:277-303.

Unique contribution

Synergistic
Transfer

THE FRAMEWORK OF INFORMATION DYNAMICS

Storage

ModificationTransfer

New

Target information

Transfer

X1

Y

X

X2
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[M Costa et al, Phys. Rev. Lett. 89, 2002]

L Faes, S Stramaglia, G Nollo, D Marinazzo ‘Multiscale Granger causality', Phys Rev E 96, 042150, 2017

time scale 5

time scale 12

time scale 1

• Multiscale methods to study individual dynamics are well established

• Multiscale computation of information transfer is non-trivial

?

?

L Faes, D Marinazzo , S Stramaglia ‘Multiscale Information decomposition: exact computation for multivariate gaussian processes',
Entropy 19, 408, 2017

• Many physical processes exhibit dynamics spanning multiple temporal scales

• We propose a formal extension of information decomposition to

multiscale analysis of jointly stationary multivariate linear processes (VAR)

GC, TE

• Formulations based on VARMA representation and state-space (SS)

modeling, leading to exact computation of information dynamics from

VAR parameters

INTRODUCTIONMULTISCALE INFORMATION DYNAMICS
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RESCALING (scale factor ):

1) AVERAGING (lowpass filtering)

2) DOWNSAMPLING
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MULTISCALE ANALYSIS OF TIME SERIES: CHANGE OF TIME SCALE
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1x 9x2x

Example:

x~

3,9  N

Example:

3,9  N



















1

0

1

0

1
,

1

l

lnn

l

lnn yyxx

 /,...,1,},{ NnyxY nnn

[M Costa et al, Phys. Rev. Lett. 89, 2002]

• Rescaling can be seen as a two-step procedure

• Traditional procedure for rescaling

[J. Valencia et al, IEEE Trans. Biomed Eng. 56, 2009]
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INTRODUCTIONMULTISCALE INFORMATION DYNAMICS
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Observed
time series

Rescaled
time series

MULTISCALE REPRESENTATION OF LINEAR PROCESSES USING STATE SPACE MODELS
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Discrete Algebraic 
Ricatti Equation
(DARE)

The State Space model defining the multivariate linear process after rescaling

can be obtained from the original VAR parameters and the scale factor 



Filtered time series

1[Aoki & Havenner, Econ. Rev. 10, 1991]

[1]

2[Solo, ArXiv 1501.04663, 2015]

[2]

[2,3]

3[Barnett & Seth, Phys. Rev. E 91, 2015]

qbb ,...,1 FIR lowpass filter

Cutoff frequency:
τ2

1
τ f

[1]

INTRODUCTIONMULTISCALE INFORMATION DYNAMICS
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EXACT COMPUTATION OF INFORMATION TRANSFER FOR LINEAR PROCESSES 
BASED ON STATE SPACE MODELS

)()()(

)(
1

a
nn

aa
n

n
a

nn

EZY

EZZ





C

KA

Information transfer in multivariate linear processes can be computed 

at any scale  from the original VAR parameters

),,,( VKCAISS

nnn

nnn

EZY

EZZ





C

KA1

Discrete Algebraic 
Ricatti Equation

(DARE)

),,,,( )()()()( aaaaSS SRQCA

aj|

SUBMODEL

))(:,),,(,,,( T)( aaaISS a
VKVKVKCA

• Computation of the partial variance of the target process given a subset of processesyj Ya

jkj

jj
jk

jij

jj
ji TT
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|
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1
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jikj

jj
jikT

|

|
ln

2
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• Submodels containing only the target, the target and one source, and the target and
both sources

jj|

jkjjij || , 

jikj|

• a = j

• a = j,i

a = j,k

• a = j,i,k

INTRODUCTIONMULTISCALE INFORMATION DYNAMICS
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• The cortical activity changes 

drastically during an epileptic 

seizure
EEG

ECG

• Recent works studied the 

correlation between the epileptic 

neural network and the autonomic 

nervous system
[K. Schiecke et al., IEEE Trans. Biomed Eng. 63, 2016]

Application of multiscale partial information decomposition to 

brain networks and networks of brain-heart interactions during epilepsy 

INTRODUCTIONAPPLICATIONS (1)

STUDY OF BRAIN AND PHYSIOLOGICAL NETWORKS IN EPILEPSY

• The study of brain networks during 

epilepsy may help in seizure 

prediction or detection

• Seizures influences also the 

peripheral ANS response
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MULTISCALE INFORMATION TRANSFER IN THE EPILEPTIC BRAIN

INTRODUCTIONAPPLICATIONS (1a)

• Intracranial EEG from a patient with intractable epilepsy
(focal seizures, 8 episodes)

• Grid of 8 x 8 cortical electrodes + 2 deep electrodes (left
hippocampal region)

[MA Kramer et al., Epilepsy Res. 79, 2008]

• 10-sec time windows before seizure onset (pre-ictal)
and during the seizure (ictal)

• Multiscale Partial Information Decomposition:

• Scale =1,...,12 (cutoff freq. f=200 Hz, ..., 16.6 Hz)

• lowpass FIR filter with q=12 coeffs

• model order: Bayesian Information Criterion ( average p=14)

• Computation of PID transfer functions from the two deep
electrodes to each cortical electrode

jikjikjkjijik SRUUT  

64,...,1;12deep,11deep  jki
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MULTISCALE INFORMATION TRANSFER IN THE EPILEPTIC BRAIN

INTRODUCTIONAPPLICATIONS (1a)

L Faes, D Marinazzo , S Stramaglia ‘Multiscale Information decomposition: exact computation for multivariate gaussian processes',  Entropy 19, 408, 2017

• Similar patterns of joint TE, TE

• Increased information transfer during seizure

• Increased synergistic and redundant TE

• Increased unique TE only from deep electrode 12 useful for seizure localization
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cc ,
i

i


 18 children with
temporal lobe epilepsy

 Pre-ictal (5 min)
 Ictal (~ 1.5 min)
 Post-ictal (~ 4.5 min)

 ECG  HRV

 EEG: • Selection of ipsilateral and contralateral
temporal lobe electrodes

• Extraction of  and  EEG envelopes

• PROTOCOL:

)|;(,)|;( 



  nnnnnn ITIT  

)|;(,)|;( 



  nnnnnn ITIT  





 

cicicici ;;, SRUUT





 

cicicici ;;, SRUUT

PARTIAL INFORMATION DECOMPOSITION IN EPILEPTIC BRAIN-HEART INTERACTIONS

INTRODUCTIONAPPLICATIONS (1b)

• Bivariate Information Transfer • Partial Information Decomposition
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Brain-heart interactions in epilepsy: RESULTS

• Brain-Heart Information Transfer

brain   heart

heart  brain 

brain   heart

heart  brain 

L Faes, R Pernice, M Feucht, K Schiecke, ‘Partial Information decomposition of brain-heart interactions in temporal lobe epilepsy in the childhood‘,
Proc. of the 41th Conf. IEEE-EMBS, 2019; in press.

• The information transfer is markedly higher along the brainheart direction

• No evident differences are observed between  and  waves, pre-ictal and post-ictal phases,

or contralateral and ipsilateral sites

INTRODUCTIONAPPLICATIONS (1b)
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Brain-heart interactions in epilepsy: RESULTS

• Partial information decomposition of brainheart information transfer

L Faes, R Pernice, M Feucht, K Schiecke, ‘Partial Information decomposition of brain-heart interactions in temporal lobe epilepsy in the childhood‘,
Proc. of the 41th Conf. IEEE-EMBS, 2019; in press.

• The unique information transfer    is mostly ipsilateral in the pre-ictal phase and contralateral

during the seizure and in the post-ictal phase

• These findings document the importance of PID, which removes from the information transfer the
redundancy between the EEG activity of the two hemispheres

INTRODUCTIONAPPLICATIONS (1b)
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INTRODUCTIONAPPLICATIONS (2)

• Cardiovascular regulatory physiology

HP(n) 

SAP(n)

Arterial Pressure
RF(n)

Heart Period

Respiration Flow

Baroreflex
Respiratory sinus 

arrhythmia

Mechanical effects of respiration on 
arterial pressure

Systolic
Pressure

Heart 
period

Respiration
Flow

iy

jy

ky

HPRESPSAP,HPRESPSAP,HPRESPHPSAPHPRESPSAP,   SRUUT

• Multiscale Partial Information Decomposition:

Sympathetic and parasympathetic systems act at different time scales

Applications: CARDIOVASCULAR and CARDIORESPIRATORY INTERACTIONS
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• Protocol: 61 young healthy subjects during head-up tilt and mental stress tasks

?

B: baseline T: head-up tilt R: recovery M: mental arithmetics

H(n) H(n+1)H(n-1)

R(n-1) R(n)

R(n+1)

S(n-1) S(n) S(n+1)

ECG

Arterial
pressure

Respiration

0 300

m
s
e
c

0 300

m
m

H
g

0 300

d
m

3

Heart
period

Systolic
BP

Respiration

MULTISCALE CARDIOVASCULAR INFORMATION DECOMPOSITION

• Signals and time series:

• Multiscale information decomposition:

HPRESPSAP,HPRESPSAP,HPRESPHPSAPHPRESPSAP,   SRUUT

• Scale =1,...,12

• lowpass FIR filter with q=12 coeffs

• model order: Bayesian Information Criterion ( average p=14)

INTRODUCTIONAPPLICATIONS (2a)
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INTRODUCTIONAPPLICATIONS (2a)

J Krohova, L Faes, B Czippelova, Z Turianikova, N Mazgutova, R Pernice, A Busacca, D Marinazzo, S Stramaglia, M Javorka ‘Multiscale information
decomposition dissects control mechanisms of heart rate variability at rest and during physiological Stress‘, Entropy, 2019; 21:526.

MULTISCALE CARDIOVASCULAR INFORMATION DECOMPOSITION
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• The linear representation is restricted to AR processes

• Limits of linear multiscale information dynamics

• The model cannot account for long range correlations

• Linear multiscale analysis based on fractionally integrated AR models

nn EXLB )(

Rescaled time series
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Filtered time series

Cutoff freq.:
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1
τ f
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INTRODUCTIONAPPLICATIONS (2b)

L Faes, MA Pereira, R Pernice, M Javorka, ME Silva, AP Rocha ‘Multiscale information storage of linear long-range correlated stochastic 
processes',  Physical review E, 2019, 99:032115
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L Faes, MA Pereira, R Pernice, M Javorka, ME Silva, AP Rocha ‘Multiscale information storage of linear long-range correlated stochastic 
processes',  Physical review E, 2019, 99:032115

Experimental Protocol

Construction of beat-to-beat variability series

61 Healthy subjects
(37 females, 17.5  2.4 years)

 HEAD-UP TILT

Supine 45° head-up tilt upright

H(n) H(n+1)H(n-1)

S(n-1) S(n) S(n+1)

ECG

Arterial
pressure

0 300

m
s
e
c

0 300

m
m

H
g

RR 
intervals

Systolic
BP

Multiscale information storage in cardiovascular physiology

Data analysis • Stationary windows of N=300 beats

• ARFI identification: computation of d with Whittle semiparametric estimator

computation of A(L) with least squares, order p with BIC criterion

INTRODUCTIONAPPLICATIONS (2b)
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Multiscale 
information storage

Difference
upright – supine

• AR method

• AR method
after detrend

• ARFI method

 SX at short scales

• from supine to upright:

 SX at short scales

• from supine to upright:

• from supine to upright:

Increase of regularity of
heart rate variability with tilt

 SX at long scales

 SX at short scales

Higher complexity of heart rate
variability with tilt, related to
long-range correlations

INTRODUCTIONAPPLICATIONS (2b)
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• AR method

• AR method
after detrend

• ARFI method

Multiscale 
information storage

Difference
upright – supine

 SX at scale 1

• from supine to upright:

 SX at scales >1

 SX at scale 1

• from supine to upright:

 SX at scales >1

 SX at scales >1

• from supine to upright:

 SX at scale 1

Lower complexity of SAP
associated with short term
dynamics (respiratory?)

Higher complexity of SAP
associated with slow
oscillations (sympathetic?)

INTRODUCTIONAPPLICATIONS (2b)
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EEG

ECG/HRV

CONCLUSION

“An information-theoretic framework to dissect 

multivariate and multiscale physiological interactions”

Multivariate analysis Multiscale analysis Information dynamics

different organ systems different biological clocks Linear regression models

The ability to handle multivariate and multiscale dynamics and the 

general applicability should make the proposed tool useful in many 

contexts within the field of Network Physiology


