Limitations on inferring couplings and directionality

Lessons learned from evolving epileptic brain networks

Klaus Lehnertz

IZ~KS

Interdisciplinary Center

for Complex Systems

University of Bonn, Germany

Helmholtz-Institute for Radiation- and Nuclear Physics

Complex Networks

physical

- power grids, roads, airlines, internet, climate

biological

- neurons, metabolism, genes, protein, food, epidemics

social

- friendships, affiliations, sexual contacts

organizational

- firms, markets, governments, finance

knowledge

- citations, words, WWW

pictures: Internet

Complex Network Brain

Brain Networks - Relevance

properties of functional/structural brain networks are sensitive to:

behavioral variability cognitive ability genetic information shared genetic factors gender age drugs Alzheimer's disease schizophrenia acute depression multiple sclerosis attention deficit hyperact. dis. spinal cord injury epilepsy

Inferring Networks of the Brain - Structure

small-scale:

- nodes \rightarrow neurons
- links \rightarrow synapses
- desirable, but hard (impossible?) to access

```
medium-scale: ???
```

- large-scale:
- nodes \rightarrow brain regionslinks \rightarrow fiber bundles

high-res. MRI, DTI, parcellation schemes, ...

Inferring Networks of the Brain - Function

small-scale:

nodes \rightarrow single neuron (glia) dynamics links \rightarrow synaptic (other) interactions <u>emerging technology</u>

large-scale:

- nodes \rightarrow sensors (dynamics of *networks of neuron networks*)
- links → interactions (weighted and/or directed), time series analysis

EEG, iEEG, MEG, fMRI, ...

medium-scale: ???

Concepts: Brain Connectivity

- structural connectivity:

physical (and chemical) connections between neuronal populations or individual neurons

- functional connectivity:

statistical dependence (or similarity) between neurophysiological signals recorded from distributed and often spatially remote neuronal units, regardless of whether these units are connected by direct structural links

- effective connectivity:

influence that one neural system exerts over another. *Requires a mechanistic model of causal effects (incl. structural parameters) or involves time series analysis*

Concepts: Brain Connectivity

- structural connectivity:

fully accessible? limited methodologies

- functional connectivity:

statistical dependence may be due to various reasons what is a "good measure" ?

- effective connectivity:

relates to coupling or directed causal influence

- how to define "coupling" (underlying mechanism) ?
- inference of causality is notoriously problematic !

Assessing Couplings from Time Series

(lin./nonlin. uni-/bi-/multivariate) analysis techniques

- statistical approaches
- approaches in time/frequency domain
- information theoretical approaches
- state-space-based approaches
- Fokker-Planck formalism
- ...

requirements

- different aspects of dynamics / synchronization phenomena
- robustness against noise/measurement errors
- strength and/or direction of couplings; coupling function
- computing time (field data analyses)
- interpretability (causality? direct vs. indirect; common sources)

Assessing strength and direction of couplings

Phase dynamics

- phase time series (e.g. via Hilbert- or wavelet- transformation)
- strength: phase locking condition
- direction: temporal evolution of the unwrapped phase time series

Information / Entropy

- Granger causality, (conditional) mutual information, transfer entropy
- direction: asymmetry of approaches, strength: other approaches

State space

- state space reconstruction (e.g. time-delay embedding)
- strength and direction: properties of functional relationship, interdependence

Assessing Couplings

probing (actio est reactio)

system response due to perturbation (relaxation phen.) repeated measurements, limited number of data points, nonstationarity, "true" dynamics?

observing (if probing is not possible) time series analysis of ongoing activity large amount of data, nonstationarity

characteristics of couplings

- strength
- direction
- coupling function

+ temporally and spatially resolved

Assessing Directional Couplings - Time Resolved Analysis -

- ensemble of a sufficiently large number of time series as multiple realizations of a process
- estimate directionality across realizations at each time point
- estimate significance level with surrogates (e.g. permutations of realizations)
- nonlinear interdependence, cross dependency, symbolic transfer entropy

Directed Couplings from Event-Related Activities - Time Resolved Analysis of Symbolic Transfer Entropy -

Simon task:

- press right/left button upon presentation of red/blue circles
- 100 repetitions for each possible combination \rightarrow 400 trials
- 12 healthy volunteers
- scalp EEG recording; ref.: Cz
 0.5-300 Hz, ∆f: 1000 Hz, 16bit ADC

expected directions of interaction:

- 0 100 ms after stimulus onset:
 occipital → frontal
- 400-500 ms after stimulus onset (mean reaction time):
 - frontal \rightarrow central and parietal

Directed Couplings from Event-Related Activities - Time Resolved Analysis of Symbolic Transfer Entropy -

0 - 100 ms post-stimulus

400 - 500 ms post-stimulus

Martini et al., Phys Rev E 83, 011919, 2011

Strength of Couplings in Epileptic Networks

H. Dickten et al, Sci. Rep. 6, 34824, 2016

f = focus, n = neighborhood, o = other

Direction of Couplings in Epileptic Networks

Lake Como School of Advanced Studies - 29 July - 03 August, 2019

Strength and Direction of Couplings

patient group:

- highest strength of interactions within the epileptic focus (gradually declines with increasing distance)
- epileptic focus "drives" all other brain areas
- largely unaffected by physiological activities (e.g. circadian rhythms)

single patient

- very high variability (... reasons?)

similar findings (phase-based vs information-theoretic approaches)

- what kind of synchronization phenomena ?

(phase, generalized, ...) ?

- confounding variables ?

Confounding Variables: Common Sources

mean phase coherence

$$R = \left| \frac{1}{N} \sum_{j=1}^{N} \exp\left(i(\Phi_a(j) - \Phi_b(j))\right) \right|$$

phase lag index

$$P = \left| \frac{1}{N} \sum_{j=1}^{N} \operatorname{sgn}[\sin(\Phi_a(j) - \Phi_b(j))] \right|.$$

weighted phase lag index

$$P_{w} = \frac{\left|\sum_{j=1}^{N} \sin\left(\Phi_{a}(j) - \Phi_{b}(j)\right)\right|}{\sum_{j=1}^{N} |\sin(\Phi_{a}(j) - \Phi_{b}(j))|}.$$

Mormann et al., Physica D 144, 358, 2000; Porz et al., Chaos 24, 033112, 2014

Modeling impact of common sources (CS)

superposition with $\alpha \in [0,1)$ $\tilde{s}_a(j) = (1 - \alpha)s_a(j) + \alpha s_b(j), \ \tilde{s}_b(j) = s_b(j)$, or $\tilde{s}_b(j) = (1 - \alpha)s_b(j) + \alpha s_a(j), \ \tilde{s}_a(j) = s_a(j)$,

mixing with $\alpha \in [0,0.5)$ $\tilde{s}_a(j) = (1 - \alpha)s_a(j) + \alpha s_b(j),$ $\tilde{s}_b(j) = (1 - \alpha)s_b(j) + \alpha s_a(j),$

Confounding Variables: Common Sources

2.0

coupled oscillator models

R

- strongly affected by CS
- more robust to noise (meas. + dyn.)

P and P_W

- less influenced by CS
- less robust to noise (compared to R)
- dependent on oscillator type and direction of coupling !
- no advantage of P_W over P

Porz et al., Chaos 24, 033112, 2014

Porz et al., Chaos 24, 033112, 2014

Confounding Variables: Common Sources

Porz et al., Chaos 24, 033112, 2014

equivalence (light gray) non-equivalence (dark gray) of power spectra

3

Second International Summer Institute on Network Physiology (ISINP) Lake Como School of Advanced Studies - 29 July - 03 August, 2019

E. Langford, N. Schwertman, M. Owens, "Is the property of being positively correlated transitive?" Am Stat 55, 322, 2001 LA Baccalá, K Sameshima, Biol Cybern 84, 463, 2001; R Dahlhaus, Metrika 51, 157,2000; L Sommerlade et al., Phys Rev E 80, 051128,2009; D Kugiumtzis, Phys Rev E 87, 06291, 2013; Kralemann et al., New J Physics 16, 085013, 2014

Confounding Variables: Indirect Interactions

intracranial EEG recording (76 hrs) from an epilepsy patient 76 recording sites, moving-window phase-based directionality estimation

Delayed Directed Couplings

H Dickten & KL, Phys Rev E 90, 062796,2014

Delayed Directed Couplings

- 36 h iEEG recording, patient with right MTLE
 averaged delayed symbolic transfer entropy
- driving post. MTL -> ant. MTL
 delay times: ~ 50 60 ms

Assessing Directional Couplings

evaluate both strength *and* direction

influencing factors:

- system properties intrinsic frequencies, noise distributions, dimensionalities,..
- time scales / number of data points
- uncoupled vs. fully coupled
- bias due to time series analysis techniques

Conclusions

- inferring couplings and directionality remains notoriously difficult
- impact of influencing factors often poorly understood
- other potential confounders?
- networks

application to all pairwise interactions justified ? *true* multivariate approaches rare..... reliable ?other? wide applicability not yet shown

- network physiology

different systems with different properties interactions poorly understood requires matching of (vastly different) time scales

