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» Reconstruction of a Kuramoto-type network

» Reconstruction of a neural field network
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Kuramoto-type network

Coupled oscillators are desctibed via the phase dynamics
ékZWk+Fk(91,...,9N), ]-Sk?./SN

Popular examples of different complexity:

N
generic pairwise coupling: 0 = wy + Z Qkj(8;,6k)
J=1j#k
' N
Winfree-type coupling: 0 = wi + S(0k) Z Akig(0;),
J=Li#k

N
Kuramoto-Daido coupling: 8 = wy + Z Fi(6; — 0k)
J=Li#k
N N

Hypernetwork: ék = Wk + Z Z ijl(0j7'9k7 9/)
Jj=1,j#k I=1,1#k 1>}



Reconstruction approach

We observe the time series 6, (nAt) and calculate the time
derivatives 61 (nAt)
The coupling function is represented as a Fourier series

M
Mj(x) = (Cyj,mcos mx + Sij,msin mx) .

m=1

what leads to a set of equations for unknown C, S, w:

Y
01(n) = w1 + Z Z [ Cyj,m cos m(8;(n) — Oi(n))+

+51jm sin m(HJ-(n) — Hk(n))]

The unknown parameters are then deterimned by virtue of Singular
Value Decomposition through minimisation of squared error.



Example: KD network with realistic coupling
function

Coupling function from the experimental findings by [Kiss, Zhai
and Hudson, PRL (2005)] applied to a random network of 32

oscillators.
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In the case of synchronous dynamics all the frequencies are

identical and direct reconstruction is not possible
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Synchronous dynamics: resettings

We apply random resettings of the phases and use transients to

reconstruct as abgve . . . . . i
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For large enough number of resettings a good reconstruction is
possible



Neural field networks

Following G. B. Ermentrout and D. H. Terman, Mathematical

Foundations of Neuroscience (2010), there are two formulations of
neural field models:

also state and prove the very general Cohen—Grossberg theorem. Specifically, we
are interested in networks of the two general forms:

k

du;
r,-d—t-’ +u;j = F; (Zw,kuk) : (12.1)

av;
rjd—[*’ + V=Y wiFe (V). (12.2)
k

The first of these is the so-called ‘firing rate’ formulation, whereas the second is the
voltage formulation. Cowan and Sharp [50] reviewed the history of neural networks

Here F; are monotonic functions (typically F(x) ~ 1 + tanh(x))
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Reconstruction problem

For the network systems

n
X+ % = Fj <Z ijxk>

k=1

n
X = =5+ Y CFi(x)

k=1
under an assumption that time series x;(t),i =1,...,n are
available, but all the parameters
Tj, F_]()a Wik, Vs Fk(')u Cjk

are unknown

we want to reconstruct these unknown parameters from the
observations x(t)



Case I: Firing rate network

n
7%+ % = (Z ijXk>
k=1

We take n = 100 and random parameters: 1 — 70 < T <1+ 70
Fi(u)=aj/[l+exp(—u—p;)l, 1 —a® <a; <1+a°

Connection matrix: wj, = 8- N(0, 1) are non-zero with probability
pc =0.15

o I
© )

fields xk(t)

o

Dynamics of the fields X(t) is chaotic
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Idea of reconstruction

Take one of the nodes, e.g. node 1, and define the vector
Ck = Wik, then
X1+ x1 = F1 (¢ X(t))

We use monotonicity of Fi:

If Tix1(t1) + x1(t1) = mix1(t2) + x1(t2), then C- X(t1) = € - X(t2)
This can be re-written as ¢+ (X(t1) — x(t2)) = 0

Now let us collect all the pairs of times t;, t,, for which

mix1(ti) + x1(t;) = 1ix1(tm) + x1(tm). This yields a large set of
relations

c-Z(s) =0, s=1,....,M, where Z=x(t;)— x(tm)

Finding ¢ = Singular Value Decomposition problem of finding the
null space (vanishing Singular Value) of a M x n matrix A,
composed of M vectors Z(s) as the rows.



Finding time constant 7;

Above we assumed that the time constant 77 is known — to find
this constant we can scan a range of values of 71 and to chose that
with the minimal Singular Value
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Dependence of the minimal singular value on the parameter 7 for
different lengths of time series (from top to bottom: total used
time intervals 2500, 1250, 500, 250, 100). The vertical line shows
the true value of 7.



Quality of reconstruction
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Noise sensitivity
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Original coupling constants wy; (circles) and the reconstructed
ones erj for the data sets with total used time interval T = 5000,
for two values of standard deviation of observational Gaussian
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The noisy data sets have been pre-processed with the
Savitzky-Golay filter of order (16,16,4), the same filter has been
used to calculate the derivatives.
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Case IlI: Voltage network

n
% = =% + D, CGicFie(xe)
k=1
Sompolinsky et al. [Phys. Rev. Lett. v. 61 n. 3 p. 259 ] showed
that this neural activity model with a sigmoidal gain function
F(x) = tanh(x) demonstrates chaos for strong enough random
coupling.
We use random uniformly distributed 1 — A <v; <1+ A and Cj
from a Gaussian distribution. Here n = 16.
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Matrix inversion

n
%= =%+ 2 CGieFibxe)
k=1
Because functions Fi() are not known, we cannot use the
procedure from the firing-rate network setup above, but assuming
that the matrix C is invertable W = C~! we can rewrite the

system of equations as

F(x) =Y Wik + vixi)



Reconstruction idea

F(x) = Z Wii(xi + vixi)
For any function F (not necesserely monotonic one) if
xj(t1) = x;(t2), then

Wi [xi(t1) + vixi(t1) — xi(t2) —7i(t2)] = 0

Collecting all time instants t;, tp, for which x;(t/) = xj(tm), we
obtain a large set of equations

VV,'J'ZJ'(S):O, SIl,...,M,
zi(s) = [xi(tr) + vixi(tr) — Xi(tm) — vi(tm)]

from which the matrix W can be found via Singular Value
Decomposition as Null-Space-Vectors.



Known time constants

FOg) =Y Wik +7ixi)
For the reconstruction we need to possess all the time constants
~;. If they are known, the task is easy.

6 T T T T
. 00001000
at 4
o
g
& 27 7
E £ o000 | i
8 s
s E
3 3
2 or 4 8
] 3 -
2 s
£ %
3 £ .
] 8
€ o / i H
/ §  0.0000010 |- . . ;s - . -
of o
4t ./ 4
L4
.
.
© y : . ; y 0.0000001 > L L
B -4 2 0 2 4 6 I 4 2 o 2 " S
True couplings True couplings

19/21



Unknown time constants

. T Here we have to find all
e 4 2 0z 4 the time constants ~; —
107 ——— this was accomplished via
3 Simulating Annealing
serach for the minimal
Singular Value.

Reconstructed couplings
S A b o v s oo
T

Error(Reconstructed couplings)

Reconstructed coupling

g coefficients and time
gu0'kg gd "B 4, 7 g o1 constants. Four symbols
awtfp D% Ho BE O show four independent
Lpreya e 1 runs of the simulated

c . .

L S S S annealing routine. Number
fii] 0 2 4 6 8 10 12 14 16

oscillator # of points used 10000.
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Conclusions

» Oscillatory networks in phase dynamics representation can be
reconstructed for different complexity levels (Kuramoto-Daido
coupling, Winfree coupling, hypernetwork)

» In case of full or partial synchrony, phase resettings help

» For neural networks, only general structural knowledge about
the systems is needed, but long and possibly noise-free time
series is required

» Scalar local dynamics

» Similar approach to networks with time-delay coupling:
Sysoev, Ponomarenko, et. al, Phys. Rev. E 89 062911
(2014); 94 052207 (2016)

Publications: Phys. Rev. E 93 062313 (2016), EPL, v. 119, 30004
(2017), Phys. Lett. A, v. 382, 147-152 (2018)



