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Kuramoto-type network

Coupled oscillators are desctibed via the phase dynamics

θ̇k = ωk + Fk(θ1, . . . , θN), 1 ≤ k , j ≤ N

Popular examples of different complexity:

generic pairwise coupling: θ̇k = ωk +
N
∑

j=1,j 6=k

Qkj(θj , θk)

Winfree-type coupling: θ̇k = ωk + S(θk)
N
∑

j=1,j 6=k

Akjg(θj),

Kuramoto-Daido coupling: θ̇k = ωk +
N
∑

j=1,j 6=k

Γkj(θj − θk)

Hypernetwork: θ̇k = ωk +

N
∑

j=1,j 6=k

N
∑

l=1,l 6=k,l>j

Gkjl(θj , θk , θl)
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Reconstruction approach

We observe the time series θk(n∆t) and calculate the time
derivatives θ̇1(n∆t)
The coupling function is represented as a Fourier series

Γ1j(x) =
M
∑

m=1

(C1j ,m cosmx + S1j ,m sinmx) .

what leads to a set of equations for unknown C , S , ω:

θ̇1(n) = ω1 +
N
∑

j=2

M
∑

m=1

[

C1j ,m cosm(θj(n)− θk(n))+

+S1jm sinm(θj(n)− θk(n))
]

The unknown parameters are then deterimned by virtue of Singular
Value Decomposition through minimisation of squared error.
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Example: KD network with realistic coupling

function

Coupling function from the experimental findings by [Kiss, Zhai
and Hudson, PRL (2005)] applied to a random network of 32
oscillators.
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Red pluses: reconstruction with M = 1, green crosses: M = 2,
blue squares: M = 3 (M is the number of Fourier harmonics used).
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Synchronous dynamics

In the case of synchronous dynamics all the frequencies are
identical and direct reconstruction is not possible
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Synchronous dynamics: resettings

We apply random resettings of the phases and use transients to
reconstruct as above
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Neural field networks

Following G. B. Ermentrout and D. H. Terman, Mathematical
Foundations of Neuroscience (2010), there are two formulations of
neural field models:
also state and prove the very general Cohen–Grossberg theorem. Specifically, we

are interested in networks of the two general forms:

�j

duj

dt
C uj D Fj

 

X

k

wjkuk

!

; (12.1)

�j

dVj

dt
C Vj D

X

k

wjkFk.Vk/: (12.2)

The first of these is the so-called ‘firing rate’ formulation, whereas the second is the

voltage formulation. Cowan and Sharp [50] reviewed the history of neural networks

and provided a guide to the main results.
Here Fj are monotonic functions (typically F (x) ∼ 1 + tanh(x))
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Reconstruction problem

For the network systems

τj ẋj + xj = Fj

(

n
∑

k=1

wjkxk

)

ẋj = −γjxj +
n
∑

k=1

CjkFk(xk)

under an assumption that time series xi (t) , i = 1, . . . , n are
available, but all the parameters

τj , Fj(·), wjk , γj , Fk(·), Cjk

are unknown

we want to reconstruct these unknown parameters from the
observations ~x(t)
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Case I: Firing rate network

τj ẋj + xj = Fj

(

n
∑

k=1

wjkxk

)

We take n = 100 and random parameters: 1− τ0 < τj < 1 + τ0,
Fj(u) = αj/[1 + exp(−u − ρj)], 1− α0 < αj < 1 + α0

Connection matrix: wjk = 8 · N(0, 1) are non-zero with probability
pc = 0.15
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Idea of reconstruction

Take one of the nodes, e.g. node 1, and define the vector
ck = w1k , then

τ1ẋ1 + x1 = F1 (~c · ~x(t))

We use monotonicity of F1:
If τ1ẋ1(t1) + x1(t1) ≈ τ1ẋ1(t2) + x1(t2), then ~c · ~x(t1) ≈ ~c · ~x(t2)
This can be re-written as ~c · (~x(t1)− ~x(t2)) ≈ 0
Now let us collect all the pairs of times ti , tm for which
τ1ẋ1(ti ) + x1(ti ) ≈ τ1ẋ1(tm) + x1(tm). This yields a large set of
relations

~c · ~z(s) = 0, s = 1, . . . ,M, where ~z = ~x(ti )− ~x(tm)

Finding ~c = Singular Value Decomposition problem of finding the
null space (vanishing Singular Value) of a M × n matrix A,
composed of M vectors ~z(s) as the rows.
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Finding time constant τ1

Above we assumed that the time constant τ1 is known – to find
this constant we can scan a range of values of τ1 and to chose that
with the minimal Singular Value
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Quality of reconstruction
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Reconstruction of the gain function
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Noise sensitivity
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Case II: Voltage network

ẋj = −γjxj +
n
∑

k=1

CjkFk(xk)

Sompolinsky et al. [Phys. Rev. Lett. v. 61 n. 3 p. 259 ] showed
that this neural activity model with a sigmoidal gain function
F (x) = tanh(x) demonstrates chaos for strong enough random
coupling.
We use random uniformly distributed 1−∆ < γj < 1 + ∆ and Cjk

from a Gaussian distribution. Here n = 16.
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Matrix inversion

ẋj = −γjxj +
n
∑

k=1

CjkFk(xk)

Because functions Fk() are not known, we cannot use the
procedure from the firing-rate network setup above, but assuming
that the matrix C is invertable W = C−1 we can rewrite the
system of equations as

F (xj) =
∑

Wji (ẋi + γixi )
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Reconstruction idea

F (xj) =
∑

Wji (ẋi + γixi )

For any function F (not necesserely monotonic one) if
xj(t1) ≈ xj(t2), then

Wji [ẋi (t1) + γixi (t1)− ẋi (t2)− γi (t2)] ≈ 0

Collecting all time instants tl , tm for which xj(tl) ≈ xj(tm), we
obtain a large set of equations

Wij zj(s) = 0, s = 1, . . . ,M,

zj(s) = [ẋi (tl) + γixi (tl)− ẋi (tm)− γi (tm)]

from which the matrix W can be found via Singular Value
Decomposition as Null-Space-Vectors.
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Known time constants

F (xj) =
∑

Wji (ẋi + γixi )

For the reconstruction we need to possess all the time constants
γi . If they are known, the task is easy.
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Unknown time constants
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constants. Four symbols
show four independent
runs of the simulated
annealing routine. Number
of points used 10000.
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Conclusions

◮ Oscillatory networks in phase dynamics representation can be
reconstructed for different complexity levels (Kuramoto-Daido
coupling, WInfree coupling, hypernetwork)

◮ In case of full or partial synchrony, phase resettings help

◮ For neural networks, only general structural knowledge about
the systems is needed, but long and possibly noise-free time
series is required

◮ Scalar local dynamics

◮ Similar approach to networks with time-delay coupling:
Sysoev, Ponomarenko, et. al, Phys. Rev. E 89 062911
(2014); 94 052207 (2016)

Publications: Phys. Rev. E 93 062313 (2016), EPL, v. 119, 30004
(2017), Phys. Lett. A, v. 382, 147-152 (2018)
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