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Two coupled deterministic oscillators

Interaction of two periodic oscillators may be attractive ore

repulsive: one observes in phase or out of phase synchronization,
correspondingly
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Two coupled deterministic oscillators: Adler
equation

¢1=w+ow+psin(p2 —p1) P2 =w — 0w+ psin(pr — ¢2)
Adler equation for the phase difference 6 = 1 — @2:
0 = 26w —2usinf

Frequency difference () vs coupling strength 1 for fixed mismatch
dw:

Frequency difference

/\ Coupling strength

Repulsive coupling: Attractive coupling:
Anti-phase locking In-phase locking
Frequency entrainment Frequency entrainment




Phase locking:
v1(t) — @2(t) ~ const

Frequency entrainment:

vi = (1) = v2 = ($1)
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Many coupled deterministic oscillators: Kuramoto
model

Describes an ensemble of phase oscillators with all-to-all coupling
. 1
b =wi+ pp > _sin(d; — 6i)
j=1

Can be written as a mean-field coupling

. . 1 .
o; = witu(—Xsin ¢;+Y cos ¢; X+iY =7 =Re’® = = e/
K N

j

g(w)
The natural frequencies are dis-
tributed around some mean fre-
quency wo wo w




Synchronisation transition

negative (repulsive) and small large positive p: synchroniza-
w: no synchronization, phases tion, distribution of phases is
are  distributed  uniformly, non-uniform, mean field # 0

mean field = 0



Phase locking vs Frequency entraiment

Phase locking is characterized by the mean field

N
§ elPk
1

Beyond the synchronization threshold R > 0 indicating that the
phases are close to each other

1
R=—
N

Frequency entrainment: A cluster of oscillators with exactly
equal frequencies appears, all other frequencies are pulled together
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Synchronization by common noise
Two or more identical oscillators driven by the same noise:
Pk = w + &(t) sin gk
Equation for the (small) phase difference:

d
£4
dg(f = % Indp = &(t) cos

Averaging yields the Lyapunov exponent:

A= <% Ind) = (£(£) cos ) < 0

Negative Lyapunov exponent: the fully synchronous state
P11 =2 =...= PN

is stable
With a small frequency mismatch the phases are close to each
other (1 = » but do not coincide



Reliability of neuron spikes (Mainen and Sejnowski,
1995)

A neuron is subject to the same noisy forcing = the same response
(after Hunter et al, J. Neurophysiol., 1427 (1998))

FIG. 4. Spike time reliability in Aplysia

A HA =054 motoneuron with aperiodic inputs. Super-
| posed voltage traces from 10 different trials
_A’_/ - recorded from a buccal motoneuron for 4 dif-
' ferent input signals. A: broadband aperiodic

input
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Common noise in ecology: Moran effect

P. A. P. Moran (Aust. J. Zool. 1, 291, 1953) mentioned that two
linear systems driven by correlated noises produce correlated

outputs
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Temporal dynamics of feral sheep populations on the St. Kilda
archipelago (Grenfell et al, Nature, 394, 674, 1998)
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Phase locking vs Frequency entrainment

Ensemble of uncoupled oscillators with a distribution of frequencies
under common noise

Phase locking: Mean field

1
R=—
N

N
§ elPk
1

is large

Frequency entrainment:
Frequencies are not affected by the common noise — they remain
the (nearly) natural ones
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Common noise + coupling

Common noise + attractive coupling;:

Both factors lead to a large order parameter

Frequencies are pulled together due to attractive coupling
Phase locking and Frequency entrainment

Common noise + repulsive coupling:
Noise leads to a large order parameter (at least if the coupling is
not too large)
Frequencies are dispersed due to repulsive coupling
Phase locking and Frequency anti-entrainment



Ensemble with common noise and coupling
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Model: ensemble of phase oscillators with common
noise and Kuramoto-type coupling

We consider thermodynamic limit N — oo with a Lorentzian
distribution of natural frequencies

_ g
= @

Langevin equations:

oo = Q+ o&(t)sinpq + pRsin(® — vq) ,
(E(B)E(t')) =2o(t - t) .

Here the mean field is defined as

Z = Re'® = (ei“’> = /

—0o0

o

2
ng(Q)/ dpq eive w(pq,t),
0



Ott-Antonsen formulation

Under the assumption of a particular parametrization of the
probability density, the order parameter Z obeys a stochastic
differential equation

- Z(1—1|Z?)—0o(1—2?
7= inoz 47 + H2AZIZR — ol = 2

It contains four parameters:

» the basic frequency Qg (which, in contradistinction to the
usual Kuramoto model, cannot be simply shifted to zero,
because the noise term breaks the frequency-shift invariance)

» the noise intensity 2
» the coupling constant p

» the width of the distribution of natural frequencies ~.



After averaging over fast frequency €2

Assuming that g is large, we average over fast oscillations and
obtain for an order parameter J = R?/(1 — R?) the following
stochastic equation

dJ 2 1+ J)J
—:MJ—27J(1+J)+%(J+1/2)—0 a+JJ

dt (1)

with new effective noise (1(t)
Relation R & J:

R=0 < J=0 R=1 & J=o0



Identical oscillators

Here v =0 and
dJ o2 1+ J)J
Y T -/ S g
dt 2
The limit J — oo (full synchrony) is simple, here
1d d o? o
Jal =@ =ty el

Quantity A = —u — "72 is the Lyapunov exponent determining
stability of the full synchrony

p > —o?/2: full synchrony stable
p < —a?/2: full synchrony unstable
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“Bistability”

Here v =0 and
dJ o? (1+0)J
E—MJ—F 7(./4‘1/2)—0’ ?Cl(t)

For —02/2 < i < there is a “bistable” situation: full synchrony is
stable, and the coupling is repulsing so that the asynchronous state
J =0 is stable in absence of noise

asynchronous state J = 0: noise is additive — broad distribution of
J

synchronous state J = co: noise is multiplicative, no fluctuations
around this state

synchronous state always wins and is an absorbing one



Nonidentical oscillators

Distribution of J can be found analytically:

(14 J)%o " exp[—4yo—2(1 + J)]
(4y0=2) 1421071 (202 + 1,470 2)

W(J;v, 1, 0°) =

where ['(m, x) is the upper incomplete Gamma function. The
average values of the order parameters are
2 4
T (“f +2, Z)
o o ) 4

2 4
(22
(R =1-T T °

2 2 4 ) <>:7 2 4
o r(ﬂm,g) ‘Wrwﬂﬂ)
g (o

N
N



Nonidentical oscillators

Values of (J) for different /o2 as functions of y1/02. From top to
bottom: /0% = 107*, 1073, 1072, 107!, 1. Brown dashed line
corresponds to the system of identical oscillators v = 0. Vertical
grey line shows the border of stability of the fully synchronous
state for v =0
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Nonidentical oscillators: frequencies

For individual phases (differences from the mean field phase
0., = pq — ®) we have stochastic equations

J:uJ2'yJ(1+J)+(722(J+1/2)U (1—1_2'/)'/(1(1“)
;o . o? (J+1/2) |
b=w—p 1+Jsm9—7msm9
o . o (J+1/2)
+ \ﬁsm 6¢1(t) + 7 (cos@ - J(1+J)> G(t)

Here w = Q — Qp is the mismatch to the mean frequency
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Solutions of an approximate equation for
frequencies

If we assume J = const, for the distribution of § we get a closed

Observed frequencies v = (6) vs natural frequencies w. Solid lines:

solutions for J = oo, markers: solutions for (J) = 10. From top to
bottom: /0% = —0.4, —0.2, 0, 0.2, 0.4. Dashed lines have
slopes 1+ 2u/02.



lllustration of frequency dispersion
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Observed frequencies v vs coupling strength p

Markers: direct simulations of the population of 21 phase oscillators (for
better visibility, not all frequencies are depicted)

Solid lines: simulations of the Ott-Antonsen equations, valid in the
thermodynamic limit, for the same individual frequencies.

The inset (a) shows the case without noise o = 0.

The inset (b) shows the case of a Gaussian distribution of frequencies.
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lllustration of the phase dynamics
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In all cases the phase difference for two oscillators is predominantly zero

(mod 27): phase locking

Attractive coupling: phase slips less frequent — frequency entrainment

Repulsive coupling: phase slips more frequent — frequency repulsion
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Identical oscillators: Is clustering possible?

A LETTERS JOURNAL EXPLORING

THE FRONTIERS OF Physics December 2009
EPL, 88 (2009) 60005 waw. epljournal .org
doi: 10.1209/0295-5075/88/60005

Common noise induces clustering in populations of globally
coupled oscillators

S. GuM®| Y. Kuramoro? and A. S. MikHAILOV!

Existence of clusters is excluded by the Watanabe-Strogatz theory
of integrability of identical oscillators (if the noise is interpreted in
Stratonovich sense): Clustering is an artifact of numerical
unaccuracy
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Conclusions

» Nearly full stochastic description of ensembles of coupled
oscillators under common noise in the Ott-Antonsen regime is
possible

» For identical oscillators: asymmetric bistability in presence of
noise and repulsive coupling, where the full synchrony always
wins

» For identical oscillators: clustering for a Kuramoto-type
coupling not possible, but can observed due to numerical
inaccuracy

» For nonidentical oscillators: Phase locking and frequency
anti-entrainment for repulsive coupling

See Sci. Reports 6, 38158 (2016), EPJ-ST 226 1921 (2017), PRE
96 062204 (2017), Chaos 29 033127 (2019)



