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Two coupled deterministic oscillators

Interaction of two periodic oscillators may be attractive ore
repulsive: one observes in phase or out of phase synchronization,
correspondingly
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Two coupled deterministic oscillators: Adler
equation

ϕ̇1 = ω + δω + µ sin(ϕ2 − ϕ1) ϕ̇2 = ω − δω + µ sin(ϕ1 − ϕ2)

Adler equation for the phase difference θ = ϕ1 − ϕ2:

θ̇ = 2δω − 2µ sin θ

Frequency difference 〈θ̇〉 vs coupling strength µ for fixed mismatch
δω:

Attractive coupling: 

In-phase locking 

Frequency entrainment 

Repulsive coupling: 

Anti-phase locking 

Frequency entrainment 

Coupling strength 

Frequency difference 
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Phase locking vs Frequency entraiment

Phase locking:
ϕ1(t)− ϕ2(t) ≈ const

Frequency entrainment:

ν1 = 〈ϕ̇1〉 = ν2 = 〈ϕ̇1〉
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Many coupled deterministic oscillators: Kuramoto
model

Describes an ensemble of phase oscillators with all-to-all coupling

φ̇i = ωi + µ
1

N

N
∑

j=1

sin(φj − φi )

Can be written as a mean-field coupling

φ̇i = ωi+µ(−X sinφi+Y cosφi ) X+iY = Z = Re iΦ =
1

N

∑

j

e iφj

The natural frequencies are dis-
tributed around some mean fre-
quency ω0 ωω0

g(ω)
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Synchronisation transition

Z

negative (repulsive) and small
µ: no synchronization, phases
are distributed uniformly,
mean field = 0

large positive µ: synchroniza-
tion, distribution of phases is
non-uniform, mean field 6= 0
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Phase locking vs Frequency entraiment

Phase locking is characterized by the mean field

R =
1

N

∣

∣

∣

∣

∣

N
∑

1

e iϕk

∣

∣

∣

∣

∣

Beyond the synchronization threshold R > 0 indicating that the
phases are close to each other

Frequency entrainment: A cluster of oscillators with exactly
equal frequencies appears, all other frequencies are pulled together
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Ensemble of coupled oscillators
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Synchronization by common noise

Two or more identical oscillators driven by the same noise:

ϕ̇k = ω + ξ(t) sinϕk

Equation for the (small) phase difference:

d
dt
δϕ

δϕ
=

d

dt
ln δϕ = ξ(t) cosϕ

Averaging yields the Lyapunov exponent:

λ = 〈 d
dt

ln δϕ〉 = 〈ξ(t) cosϕ〉 < 0

Negative Lyapunov exponent: the fully synchronous state

ϕ1 = ϕ2 = . . . = ϕN

is stable
With a small frequency mismatch the phases are close to each
other ϕ1 ≈ ϕ2 but do not coincide
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Reliability of neuron spikes (Mainen and Sejnowski,
1995)

A neuron is subject to the same noisy forcing ⇒ the same response
(after Hunter et al, J. Neurophysiol., 1427 (1998))
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Common noise in ecology: Moran effect

P. A. P. Moran (Aust. J. Zool. 1, 291, 1953) mentioned that two
linear systems driven by correlated noises produce correlated
outputs

Temporal dynamics of feral sheep populations on the St. Kilda
archipelago (Grenfell et al, Nature, 394, 674, 1998)
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Phase locking vs Frequency entrainment

Ensemble of uncoupled oscillators with a distribution of frequencies
under common noise

Phase locking: Mean field

R =
1

N

∣

∣

∣

∣

∣

N
∑

1

e iϕk
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∣
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∣

∣

is large

Frequency entrainment:
Frequencies are not affected by the common noise – they remain
the (nearly) natural ones
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Ensemble of uncoupled oscillators under common
noise
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Common noise + coupling

Common noise + attractive coupling:
Both factors lead to a large order parameter
Frequencies are pulled together due to attractive coupling

Phase locking and Frequency entrainment

Common noise + repulsive coupling:
Noise leads to a large order parameter (at least if the coupling is
not too large)
Frequencies are dispersed due to repulsive coupling

Phase locking and Frequency anti-entrainment
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Ensemble with common noise and coupling
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Model: ensemble of phase oscillators with common
noise and Kuramoto-type coupling

We consider thermodynamic limit N → ∞ with a Lorentzian
distribution of natural frequencies

g(Ω) =
γ

π[γ2 + (Ω− Ω0)2]

Langevin equations:

ϕ̇Ω = Ω+ σξ(t) sinϕΩ + µR sin(Φ− ϕΩ) ,

〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′) .

Here the mean field is defined as

Z = Re iΦ = 〈e iϕ〉 =
∫

∞

−∞

dΩ g(Ω)

∫ 2π

0
dϕΩ e iϕΩw(ϕΩ, t) ,
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Ott-Antonsen formulation

Under the assumption of a particular parametrization of the
probability density, the order parameter Z obeys a stochastic
differential equation

Ż = iΩ0Z − γZ +
µZ (1− |Z |2)− σ(1− Z 2)ξ(t)

2

It contains four parameters:

◮ the basic frequency Ω0 (which, in contradistinction to the
usual Kuramoto model, cannot be simply shifted to zero,
because the noise term breaks the frequency-shift invariance)

◮ the noise intensity σ2

◮ the coupling constant µ

◮ the width of the distribution of natural frequencies γ.
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After averaging over fast frequency Ω0

Assuming that Ω0 is large, we average over fast oscillations and
obtain for an order parameter J = R2/(1− R2) the following
stochastic equation

dJ

dt
= µJ − 2γJ(1 + J) +

σ2

2
(J + 1/2)− σ

√

(1 + J)J

2
ζ1(t)

with new effective noise ζ1(t)
Relation R ⇔ J:

R = 0 ⇔ J = 0 R = 1 ⇔ J = ∞
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Identical oscillators

Here γ = 0 and

dJ

dt
= µJ +

σ2

2
(J + 1/2)− σ

√

(1 + J)J

2
ζ1(t)

The limit J → ∞ (full synchrony) is simple, here

1

J

d

dt
J =

d

dt
ln J = µ+

σ2

2
+

σ√
2
ζ1(t)

Quantity λ = −µ− σ2

2 is the Lyapunov exponent determining
stability of the full synchrony

µ > −σ2/2: full synchrony stable
µ < −σ2/2: full synchrony unstable
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“Bistability”

Here γ = 0 and

dJ

dt
= µJ +

σ2

2
(J + 1/2)− σ

√

(1 + J)J

2
ζ1(t)

For −σ2/2 < µ < there is a “bistable” situation: full synchrony is
stable, and the coupling is repulsing so that the asynchronous state
J = 0 is stable in absence of noise

asynchronous state J = 0: noise is additive → broad distribution of
J
synchronous state J = ∞: noise is multiplicative, no fluctuations
around this state

synchronous state always wins and is an absorbing one
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Nonidentical oscillators

Distribution of J can be found analytically:

W (J; γ, µ, σ2) =
(1 + J)2µσ

−2
exp[−4γσ−2(1 + J)]

(4γσ−2)1+2µσ−2Γ(2µσ−2 + 1, 4γσ−2)

where Γ(m, x) is the upper incomplete Gamma function. The
average values of the order parameters are

〈R2〉 = 1− 4γ

σ2

Γ

(

2µβ

σ2
,
4γ

σ2

)

Γ

(

2µβ

σ2
+ 1,

4γ

σ2

) , 〈J〉 = σ2

4γ

Γ

(

2µβ

σ2
+ 2,

4γ

σ2

)

Γ

(

2µβ

σ2
+ 1,

4γ

σ2

)−1
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Nonidentical oscillators

10-1

100

101

102

103

104

-5 -4 -3 -2 -1  0  1  2  3  4  5

µ/σ2

〈J
〉

Values of 〈J〉 for different γ/σ2 as functions of µ/σ2. From top to
bottom: γ/σ2 = 10−4, 10−3, 10−2, 10−1, 1. Brown dashed line
corresponds to the system of identical oscillators γ = 0. Vertical
grey line shows the border of stability of the fully synchronous
state for γ = 0
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Nonidentical oscillators: frequencies

For individual phases (differences from the mean field phase
θω = ϕΩ − Φ) we have stochastic equations

J̇ = µJ − 2γJ(1 + J) +
σ2

2
(J + 1/2)− σ

√

(1 + J)J

2
ζ1(t)

θ̇ = ω − µ

√

J

1 + J
sin θ − σ2

4

(J + 1/2)
√

J(1 + J)
sin θ

+
σ√
2
sin θζ1(t) +

σ√
2

(

cos θ − (J + 1/2)
√

J(1 + J)

)

ζ2(t)

Here ω = Ω− Ω0 is the mismatch to the mean frequency
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Solutions of an approximate equation for
frequencies

If we assume J = const, for the distribution of θ we get a closed
Fokker-Planck equation, which can be solved numerically

10-6

10-4

10-2

10-4 10-3 10-2 10-1

ω

ν

Observed frequencies ν = 〈θ̇〉 vs natural frequencies ω. Solid lines:
solutions for J = ∞, markers: solutions for 〈J〉 = 10. From top to
bottom: µ/σ2 = −0.4, −0.2, 0, 0.2, 0.4. Dashed lines have
slopes 1 + 2µ/σ2.
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Illustration of frequency dispersion
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Observed frequencies ν vs coupling strength µ
Markers: direct simulations of the population of 21 phase oscillators (for
better visibility, not all frequencies are depicted)
Solid lines: simulations of the Ott-Antonsen equations, valid in the
thermodynamic limit, for the same individual frequencies.
The inset (a) shows the case without noise σ = 0.

The inset (b) shows the case of a Gaussian distribution of frequencies.
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Illustration of the phase dynamics
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In all cases the phase difference for two oscillators is predominantly zero
(mod 2π): phase locking
Attractive coupling: phase slips less frequent – frequency entrainment

Repulsive coupling: phase slips more frequent – frequency repulsion
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Identical oscillators: Is clustering possible?

Existence of clusters is excluded by the Watanabe-Strogatz theory
of integrability of identical oscillators (if the noise is interpreted in
Stratonovich sense): Clustering is an artifact of numerical
unaccuracy
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Conclusions

◮ Nearly full stochastic description of ensembles of coupled
oscillators under common noise in the Ott-Antonsen regime is
possible

◮ For identical oscillators: asymmetric bistability in presence of
noise and repulsive coupling, where the full synchrony always
wins

◮ For identical oscillators: clustering for a Kuramoto-type
coupling not possible, but can observed due to numerical
inaccuracy

◮ For nonidentical oscillators: Phase locking and frequency
anti-entrainment for repulsive coupling

See Sci. Reports 6, 38158 (2016), EPJ-ST 226 1921 (2017), PRE
96 062204 (2017), Chaos 29 033127 (2019)
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