Second International Summer Institute on Network Physiology, Como 2019

The nonlinear dynamics of the heart: chaos and synchronization in networks of cardiac cells

Ulrich Parlitz

- **Research Group Biomedical Physics** Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany
 - Institute for the Dynamics of Complex Systems University of Göttingen

Transitions to Cardiac Arrhythmias

Normal Rhythm

plane waves

ISINP 2019

Tachycardia

Fibrillation

electrical excitation waves

spiral waves

chaos

simulations: P. Bittihn

- the heart a network of electrically and mechanically coupled contracting cardiac cells
- excitable media, (chaotic) spiral waves, and phase singularities
- virtual electrodes and low-energy defibrillation (transient) chaos and complexity in cardiac arrhythmias

The Heart

sinus node

right atrium oxygene poor right ventricle

https://www.mayoclinic.org/diseases-conditions/heart-disease/multimedia/circulatory-system/vid-20084745 J. Heuser, http://commons.wikimedia.org/wiki/File:RLS_12blauLeg.png **ISINP 2019**

sinus nod

left atrium

oxygene rich

left ventricle

Network of Cardiomyocytes

cardiac muscle

mitochondria

provide adenosine triphosphate (ATP) supply of the cell

myofibrils

provide mechanical contraction

ISINP 2019

cardiac muscle fibers

BruceBlaus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/ index.php?curid=44969447

cardiac muscle cells

intercalated discs separate cells and consist of gap iunctions that allow ions to propagate to neighbouring cell

Ventricular Cell ~10µm x100µm

© Kornreich & Fenton

Generation of an Action Potential

adapted from Wikipedia

ISINP 2019

After an excitation the cell can be excited again not before some refractory phase has elapsed.

resting potential

ion pumps maintain concentration difference

Excitation-Contraction Coupling

from: M. Scoote et al., *Heart* 89, 371–376 (2003) **ISINP 2019**

induces electrical stimulation via stretch activated ion channels.

Mathematical Models of Cardiac Dynamics

 $\begin{array}{ll} \text{membrane} & \frac{\partial V_m}{\partial t} = \nabla \cdot \underline{\mathbf{D}} \nabla V_m - I_{\text{ion}} \\ & \frac{\partial \mathbf{h}}{\partial t} &= \mathbf{H}(V_m, \mathbf{h}) \end{array}$

generic qualitative models: e.g., Fenton-Karma (3), Beeler-Reuter (8), ...

ISINP 2019

- continuum models averaging electrical behaviour of many cells
- detailed ionic models: e.g., Luo-Rudy-II (15), Majahan (27), Bondarenko (44), ...

$$\frac{(V_m, \mathbf{h})}{C_m}$$
 ionic currents
$$I_{\text{ion}}(V_m, \mathbf{h}) = \sum_x I_x(V_m, \mathbf{h}) + I_{\text{inject}}$$

- local cell dynamics (15-30 variables, 150 300 parameters!)
- simple qualitative models: e.g., Barkley (2), FitzHugh-Nagumo (2), Aliev-Panfilov (2), ...
- see Scholarpedia article by F. Fenton and E. Cherry discussing 45 models of cardiac cells

Simple generic system: The Barkley model

$$\begin{array}{lll} \frac{\partial u}{\partial t} &=& \frac{1}{\varepsilon}u(1-u)\left(u-t\right)\\ \frac{\partial v}{\partial t} &=& u-v \quad \begin{array}{c} \text{controls}\\ \text{excitability}\\ \text{threshold} \end{array} \end{array}$$

 $1/\epsilon$ time scale of the fast variable u*a* measure for action potential duration b/a measure for excitation threshold

D. Barkley et al., Phys. Rev. A 4, 2489 (1990) D. Barkley, Physica D 49, 6170 (1991)

ISINP 2019

http://www.scholarpedia.org/article/Barkley_model

The Barkley model

 $1/\epsilon$ time scale of the fast variable ua measure for action potential duration b/a measure for excitation threshold

D. Barkley et al., Phys. Rev. A 4, 2489 (1990) D. Barkley, Physica D 49, 6170 (1991)

ISINP 2019

http://www.scholarpedia.org/article/Barkley_model

Excitation waves (Barkley model)

local stimulation in the center

no flux boundary conditions

ISINP 2019

refractory region (currently not excitable)

simulations: P. Bittihn

tihn 11

Spiral waves (Barkley model)

ISINP 2019

simulations: P. Bittihn

12

The Belousov-Zhabotinsky (BZ) reaction

Development of spiral waves after hydrodynamic breaking of a concentric wave www.scholarpedia.org

ISINP 2019

Geographic Tongue inflammatory condition of the mucous membrane of the tongue

By Geographic_tongue.JPG: Martanopuederivative work: Jbarta -This file was derived from: Geographic tongue.JPG:, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24437119

Spiral Tips and Phase Singularities

ISINP 2019

estimate phase at each location X

Spiral Tips and Phase Singularities

alternative approach: D.R. Gurevich and R.O. Grigoriev, Chaos 29, 053101 (2019)

ISINP 2019

sum of the topological charges in a domain ${\cal D}$

 $\oint_{\partial \mathcal{D}} \vec{\nabla} \theta \cdot d\vec{l} = 2\pi (n - m)$

n # clockwise rotating spirals m # counter clockwise

Dynamics of Phase Singularities

scroll wave

2D

3D

F. Fenton, E. Cherry thevirtualheart.org WebGL simulations

filaments

Measuring Cardiac Dynamics

Optical Mapping

Visualisation of membrane voltage and Ca+ concentration on the surface of the heart using fluorescent dyes

ISINP 2019

17

Measuring Cardiac Dynamics

Optical mapping in Langendorff perfusion system

using voltage sensitive fluorescent dyes

100.000 – 200.000 cases of sudden cardiac deaths in Germany per year

ISINP 2019

J. Schröder-Schetelig

Measuring Cardiac Dynamics

Visualizing mechanical scroll waves within the heart muscle using highspeed ultrasound

J. Christoph et al., Electromechanical

ISINP 2019

Terminating Cardiac Arrhythmias

Reset electrical activity of all cells by synchronous excitation Principle:

internal

Electric shocks: energy 360J (external) 40 J (internal) 1000 V 30 A 12 ms Severe side effects: tissue damage - traumatic pain

ISINP 2019

Defibrillation

G.P. Walcott et al., Resuscitation 59, 59-70 (2003)

20

Terminating Cardiac Arrhythmias

Blood vessels, scars, fatty tissue

- are obstacles to electrical conduction
- may act as virtual electrodes

Super-threshold depolarization leads to wave emission if a short rectangular electric field pulse is applied. A. Pumir and V. Krinsky, J. Theor. Biol. 199, 311 (1999); P. Bittihn et al., Phys. Rev. Lett. 109, 118106 (2012)

ISINP 2019

Virtual Electrodes

Terminating Cardiac Arrhythmias

Recruiting Networks of Virtual Electrodes for Terminating Cardiac Arrhythmias

ISINP 2019

Animation: T. Lilienkamp

Low-Energy Anti-Fibrillation Pacing (LEAP)

Pulse Generator Power Amplifier

ISINP 2019

Membrane Potential mV -80 20

N = 5 low energy pulses E = 1.4 V/cm dt = 90 ms

S. Luther et al., Nature 475, 235 (2011)

23

Transient Chaos

Transient Scroll Wave Dynamics during Ventricular Fibrillation

a.u.

 $^{-2}$

Experiment Optical mapping of a rabbit heart

Sebastian Berg Daniel Hornung Marion Kunze

ISINP 2019

Simulation in a rabbit heart geometry

Thomas Lilienkamp

Simulation using the Fenton-Karma model

$$\frac{\partial u}{\partial t} = \nabla \cdot \underline{\mathbf{D}} \nabla u - I_{Ion}(u, \mathbf{h}) / C_m$$
$$\frac{\partial \mathbf{h}}{\partial t} = \mathbf{g}(u, \mathbf{h})$$

gating variables $\mathbf{h} = (v, w)$

T. Lilienkamp and U. Parlitz, Phys. Rev. Lett. 120, 094101 (2018) **ISINP 2019**

Self Termination Episode 1.0 0.8 0.6 [.n.e] 0.4 ⁿ > 0.2 0.0 Х

Transient Chaos

Chaotic transients and the average lifetime in 2D simulations **Fenton-Karma model** 3000 initial conditions

fraction of trajectories still showing chaotic dynamics at time t

ISINP 2019

$$N_{Ch}(t) \sim \exp(-\kappa t)$$

escape rate κ

quantifies how fast trajectories from random initial conditions escape the chaotic saddle and reach the final (non-chaotic) state

$\langle T \rangle \approx \frac{1}{\kappa}$ average transient lifetime

T. Lilienkamp et al., Phys. Rev. Lett. 119, 054101 (2017)

Transient Chaos

Chaotic transients and the average lifetime in 2D simulations $\langle T \rangle \approx \frac{1}{\kappa}$ average transient lifetime

increases exponentially with system size

ISINP 2019

- Larger heart muscle volumes increase the risk of cardiac arrhythmias and related morbidity and mortality.
 - → due to longer transients and more phase singularities (??)
 - Impact of (finite) pertubations changes during some period of time prior to the end of the transient.

→ precursors for end of arrhythmia (??)

T. Lilienkamp and U. Parlitz, Phys. Rev. Lett. 120, 094101 (2018), Phys. Rev. E 98, 022215 (2018)

Summary

The heart

- consists of a network of electrically and mechanically coupled excitable elements
- forming an excitable medium that supports plane waves, spiral waves, and
- (life-threatening) spatio-temporal chaos (e.g., ventricular fibrillation)
- that can be transient and exhibits complexity fluctuations and

Outlook: Interaction with other organs, in particular heart & brain → Network Physiology

Acknowledgement

Stefan Luther and all members of the Research Group Biomedical Physics at the Max Planck Institute for Dynamics and Self-Organization, Göttingen

ISINP 2019

provides an ambitious target for (low-energy) control methods (defibrillation)

Thank you!

DZHK DEUTSCHES ZENTRUM FÜR HERZ-KREISLAUF-FORSCHUNG E.V.

Federal Ministry of Education and Research

