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- Criticality » power laws (e.g. Ising model)
- Self-organized criticality

- Scale-free network and propagation of catastrophic events
(Barabasi)

- Spread of epidemics in a population

- Avalanches in solid and amorphous materials, avalanches in brain,
energy released during an earthquake, forest fires




The «networked» world

NEUROSCIENCE OBSERVATIONS

Skewed distributions of anatomical and physiological features permeate nearly
every level of brain logical organization:

* 10% of neurons are sufficient to deal with most situations
* the other 9o% seem secondary

» POWER LAW AVALANCHES ?7?
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— Median = Mean (in linear scale) —— Mean (in log scale)

Buszaki, G, Mizuseki, K, The log-dynamic brain: how skewed distributions affect network operations, Nat. Neurosci. 2014




Ongoing Debate

In real data log-normal distributions are more common!

Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. Nature communications, 10(1), 1017.
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Scale-free networks are rare

Anna D. Broido' & Aaron Clauset 234

Real-world networks are often claimed to be scale free, meaning that the fraction of nodes
with degree k follows a power law k™%, a pattern with broad implications for the structure and
dynamics of complex systerms. However, the universality of scale-free networks remains
controversial. Here, we organize different definitions of scale-free networks and construct a
severe test of their empirical prevalence using state-of-the-art statistical tools applied to
nearly 1000 social, biological, technological, transportation, and information networks.
Across these networks, we find robust evidence that strongly scale-free structure is
empirically rare, while for most networks, log-normal distributions fit the data as well or
better than power laws. Furthermore, social networks are at best weakly scale free, while a
handful of technological and biological networks appear strongly scale free. These findings
highlight the structural diversity of real-world networks and the need for new theoretical
explanations of these non-scale-free patterns.




Focus on the log-normal
d ISt rl b Ut I O n f(x): probability density function

of a log-normally distributed random variable

f(x)={ ;azexp{_(lnz;“)z} z>0

z<0

log x

The log-normal distributions are skewed to larger x values
These distributions have been first explained by:

e The law of proportionate effect (Gibrat 1930-31)




Modelling fat tail distributions

POWER-LAW LOG-NORMAL
e Pareto (2896) distribution * Density function

* Density function x
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Self-Organized Criticality (P. Bak, 1996) Fully Developed Turbulence
Scale-Free Networks (A. Barabasi, 1999) (Kolmogorov & Obukov, 1962)
Economics (F. Black & M. Scholes, 1973)
FROM GIBRAT (1931) to KESTEN (1973)

Xt — atXt_l + bt

Random growth process (a,, b, positive random variables) ~ Conditions for stationary distribution

* Branching process: a; = a la| < 1
e Multiplicative process: b, = 0 Non stationary distribution

e Kesten process: a; (multiplicative) + b, (additive)  E[lna,] < 0 E[a*] = 1
p(x) has a a power law tail 6




The cell and the cytoskeleton

Actin filaments Microtubules Intermediate filaments

Courtesy of Ulrike Rolleke

l, > 10um l, > 1mm L, > 1um

Cell shape Mitosis Very soft
Cell mechanics Transport Cell-type specific

Migration




dorsal stress fibers
ventral stress fibers
focal adhesions

Burridge, K., & Wittchen, E. S. (2013). The tension mounts: stress fibers
as force-generating mechanotransducers. J Cell Biol, 200(1), 9-19.

a parallel arrangement of long
(20 um) fibers

a tightly connected meshwork of
short (<1 um) filaments. The latter
presented a 100 nm average mesh
Size

Thickness actin filaments =~ 7 nm



Rheology experiments on cells

Atomic Force Microscope (AFM) working principle

A sharp AFM tip indents a living immature hematopoietic cell (CD34+) and

records the reaction to external constraints ;




Singular events in FICs

Rupture event &
I | = Global Young modulus E:
F(z) x E(Z — Z.)?

. . \ . "'_. curye
1 2 3 4 6

Z = 2. (um) i Force drop:

AF = F, — F, + AZ tan(a)

Gu

Released energy:
E =AF AZ




Cancer cells vs healthy cells
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Local ruptures in FICs of CD34+ cells from patients with Chronic Myelogenous
Leukemia compared to healthy ones

Cancer (CML) Healthy
Cells N. = 49 N, = 60
FICs ne = 1301 np = 1671
Events N = 6161 Np = 6765
Event density 0 =21 um~' =14 m!




Probability distributions

Ductile

2
10g10(E)

Two separated populations both with log-normal statistics for AZ and E:

1. Ductile regime: reversible in experiment time scales # fluid-like regime
(AZy; = 30nm, E;~= 200 kgT)

2. Brittle regime: non-reversible, loss of connectivity # solid-like regime
(AZ; =50 nm, E;~= 1300 kgT)

S. Polizzi et al, The new journal of physics (2018)
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Random network model

The model proposed is based on a random Erdés—Renyi network
(cytoskeleton):

Nodes =% actin filaments
Links =) crosslinkers
The network is defined by N number of nodes and p; probability of

connection

pe = () @ —p)HNF <k>=p; (N —1)

k degree of the network




Random network giant cluster

From The Network Science Book A. L. Barabasi

For the cytoskeleton
network k € [3,10]




Cytoskeleton model

For the cytoskeleton network k € [3,10], N = 10000
NO METRICS ===) ONLY INTERACTIONS MATTER

Over this network avalanches are driven with a certain rule




Rupture avalanche process

Break a randomly chosen

link (here @« @)

Break each of them with probabi“ty Take the broken links, look at all the neighbors
I, (t = 0): @ @ break. from both sides and break with probability
M, (t+1)
t: innovations times = times when rupture events induce other
rupture events
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Introducing fractional viscoelastisity

If we look at local perturbations of a system the complex shear relaxation modulus is
Gg(w) = G () + 6" () ~ w*

* If materialis purely elastica = 0 == Gj(w) = Geonse = E/3
* Ifmaterial purely liquid a =1 == Gj(w) =i6G"(w)~iw

(a) 104

For cells a is fractional € [0,25 — 0,3] £ 1o
G 102

101 s:

: (]
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Fabry, Ben, et al.(2001). Scaling the

microrheology of living cells. Physical
review letters, 87(14), 148102.




Size distribution

(%)“/r(aﬂ)

Streched exponential results for II = pge
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® power law

What about the rest of phase
diagram?
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Memories and cooperative effects lead to log-normal distributions
in the avalanche sizes, and this is crucial in cells and maybe for
emergence of log-normal in nature

We have models for log-normal kind avalanches on random
networks but also on random reqular graphs (RFIM)

Type of phase transitions, analytical computation of the critical
threshold...

The same avalanches statistics is observed in other types of cells
(myoblasts, yeast cells)

Find this phase transition in hydrogel or cells avalanches (from
power-law to log-normal), varying some experlmental parameter
(v, T, [CcH,,O(]) )

JiS)
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