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Sleep dynamics — Conventional view and Observations

Sleep dynamics exhibit ultradian rhythms with ~ 90 min period comprised of light
sleep, deep sleep and REM sleep = “Sleep Cycle”
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* Brief awakenings from sleep (arousals) on scales of sec to min appear
random 1n time and occur throughout the sleep period



Probability distributions of arousal and sleep-stage durations
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Lo, Bartsch, Ivanov, EPL 102, 10008 (2013)



Probability distributions of arousal/sleep durations across species
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Lo, Ivanov et al., PNAS 101, 17545 (2004)



Probability distributions of arousal/sleep durations across species
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-> Co-existence of both scale-invariant (power-law) and exponential (with
a characteristic time scale) processes as an output of a single sleep
regulatory mechanism across various mammalian species

-> Has not been observed in other integrated physiological systems under

neural regulation

Lo, Ivanov et al., PNAS 101, 17545 (2004)



Relation to self-organized criticality (SOC)
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* power law statistics of avalanche size —=

Sandpile Metaphor
» Bak-Tang-Wiesenfeld model R
* slowly driven i o
* non-equilibrium steady state // ! JEE}
* avalanche of any size &/H/
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Jens Feder et. al (1995): SOC found 1n rice piles
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Dynamic characteristics of sleep/wake transitions -
Scaling changes with maturation in rats
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Power-law during wake gradually emerges with maturation.

M.S. Blumberg, A.M.H. Seelke, S.B. Lowen, K.A.E. Karlsson, “Dynamics of
sleep-wake cyclicity in developing rats”, PNAS 102: 14860 (2005).



Modeling arousal dynamics

Question: Can we come up with a simple model including a
network of sleep- and wake-promoting neurons to
reproduce the observed arousal/sleep dynamics?

Previous work by Lo, Ivanov et al., EPL 57, 625 (2002):
biased diffusion model



Neuronal groups and pathways involved in sleep/wake

generation
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Neuronal groups and pathways involved in sleep/wake

generation
During Sleep
P s g Wake promoting neurons are

P

P suppressed by VLPO but still

have intrinsic noise

“neuronal noise”




Neuronal noise — origin and characteristics

“neuronal noise” = subthreshold voltage fluctuations

Two main sources (Manwani and Koch, Neural Comput. 11, 1831 (1999)):

1) stochastic openings and closings of voltage gated membrane channels

2) random background synaptic activity

ETHE subthreshold voltage fluctuations are
b | temperature dependent and decrease
» with increasing temperature

0.5 ™ | (Steinmetz et al., J. Comput. Neurosci.
9, 133 (2000))
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Modeling arousal dynamics:

integrated neuronal noise of WPN can trigger arousal
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Modeling arousal dynamics:

integrated neuronal noise of WPN can trigger arousal
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Modeling arousal dynamics:

lower temperature yields more arousals?
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How to test model prediction experimentally?

Experiment on fish!
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Modeling dynamics of sleep/wake transitions
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» Model agrees with data for both wake and sleep intervals
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Dvir et al., Science Advances 4, eaar6277 (2018)
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Modeling arousal dynamics:

distribution of wake and sleep bout durations
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Summary

* brief arousals are an integral part of healthy sleep regulation, and are found in
mammalian and non-mammalian species

e arousal durations show power-law distribution (scale-invariant), sleep stage
durations show exponential distribution (scale-specific)

* accumulated neuronal subthreshold voltage fluctuations in wake-promoting
neurons can possibly be an origin of spontaneous brief arousals during sleep

* arousal statistics changes with temperature (more arousals at lower temp) at
least for ectothermic animals



Why do we care?
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Thermoregulation 1n very young infants not fully developed (show
ectothermic traits similar to fish); more susceptible to higher ambient
temperature and in higher risk for SIDS



Sudden Infant Death Syndrome (SIDS)

Asphyxia and brain
hypoperfusion during sleep
High neuronal noise
High arousability Low arousability
Arousal Failure of arousal
& rebreathing & hypoxic coma

Dvir et al., Science Advances 4, eaar6277 (2018)
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