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- Examples of Reservoir Computing (RC)
. Some nonlinear dynamics to model RC
« Applications of RC to dynamical system

- Relation to physiological systems?



Neural Networks vs. Reservoir Computer
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(Tanaka, et al., Recent Advances in Neural Networks, Neural
Networks, volume. 115, pp 100-123 (2019))



- Examples of Reservoir Computing (RC)




Some Interesting Reservoir Computers

A liquid state machine.
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Fernando & Sojakka, School of Cognitive and Computer Sciences, U. Sussex, Brighton, UK



A delayed feedback laser system.
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Robot Navigation
(Ghent University, Belgium)

Nonlinear control of UAV
(Cal. State Univ., Pomona)
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Movement prediction
(Graz University, Austria)
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Other test applications

Applications Benchmark tasks

Pattern classification Spoken digit recognition (Verstraeten et al., 2005b))
Waveform classification (Paquot et al.| 2012
Human action recognition (Soh and Demiris, 2012

Handwritten digit image recognition (Jalalvand et al., 2015

Time series forecasting Chaotic time series prediction (Jaeger, 2001a)
NARMA time series prediction (Jaeger, 2003
Pattern generation Sine-wave generation (Jaeger, 2002

Limit cycle generation (Hauser et al.| [2012)

Adaptive filtering and control | Channel equalization (Jaeger and Haas, 2004)

System approximation Temporal XOR task (Bertschinger and Natschliager, 2004
Temporal parity task (Bertschinger and Natschlager, |2004)

Short-term memory Memory capacity (Jaeger, 2001b)




How is this different from Neural
Networks, etc.?
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Both NN and RC involve supervised learning.
e NN train the whole network.
e RC only train the output weights. Network stays fixed.

FAST training
* RC can be physical systems.  FAST operation



What is happening here?

Input layer Reservoir Output layer Classes
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Reservoir = Driven Dynamical System

Some Dynamical properties of a Reservoir.



Some Nonlinear Dynamics Concepts




Determing the stability of the dynamics
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A < 0 stable Fixed point, Periodic
Ox ~ ™ A =0 neutral Periodic
A > 0 unstable Chaotic

Number of exponents= dimension of the system



Driven Systems
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Generalized Synchronization
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- Applications of RC to dynamical system

Using Reservoir Computing to Reconstruct
Dynamical Signals




(a) Reproduce “missing signals” from input signal from a dynamical system (Tom Carroll, NRL)
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Calculating properties of the system during the application gives correct answers.
Lyapunov exponents = ( -14.5723906, ~ 0.0, +1.64023001 )

(b) Preliminary test of reservoir training verses Neural Network. (Tom Carroll, NRL)
* LSTM neural network with 2 layers and 50 hidden nodes in each layer

* 1000 node reservoir with polynomial vector fields and random connections

neural network took 1521 seconds to train and the error 1n fitting the z signal was 0.12.
The 1000 reservoirs took a total of 180 seconds and gave an error of 0.0012.



“Learning” the dynamics of a dynamical system
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Free running reservoir computer reproduces the Lorenz attractor

Free running reservoir
computer

Original Lorenz
signals

20 —

y reservoir

Z reservoir

X reservoir

J. Pathak,Z. Lu,1, B.R. Hunt, M. Girvan, E. Ott, Using Machine Learning to Replicate
Chaotic Attractors and Calculate Lyapunov Exponents from Data, CHAOS

Attractor reconstruction by machine learning, Z. Lu, B. R. Hunt, and E. Ott



Kuramoto-Sivashinsky equations
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Kuramoto-Sivashinsky equations, Lyapunov exponents
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Calculating the first 26 Lyapunov exponents using RC



So far: a little bit of the dynamics of a RC
(stability)

How does a RC work?

How can a RC emulate a full dynamical system
just from time series?

How can a RC identify audio or visual signals ?

Nobody knows.



RC “Folklore”

Operate at the edge of chaos

Need to use sigmoid nodes —

Sparse networks for the RC
Test RC stability with iid input

Need fading memory

stable, dissipative system = forget initial conditions
flow is continuous and smooth C



Some tests of various quantities in relation to quality of RC fidelity

Operating near the “edge of chaos™ - Tom Carroll (NRL)
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fit error

. [ bR+b,R*+bR*+ AR + W |

dt
Effect of nonlinearity
Vary quadratic term Vary cubic term
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Quadratic nonlinearity necessary, but size not critical
Cubic nonlinearity not necessary

Tom Carroll (Naval Research Laboratory)



Can RC inform us about physiological systems?




physiological systems

coupled and
driven systems

coupled systems
behave in a

coordinated way

[Synchronization]

driven systems
behave in a

consistent way
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Sensory systems

Sensory processing: organization of bodily sensations from
the body itself and the environment, making it possible to for
the body to operate effectively within the environment.
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Physiological Systems

RC shows that a networks of nonlinear dynamical systems
can react 1n consistent and reproducible ways to complex and
very different inputs yielding consistent outputs that allow
1dentification, enable accurate classification of inputs, and
automatic reactions to the stimuli.

A model or metaphor for physiological systems?
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Long ago ...

From L. Pecora and T. Carroll, Synchronization in Chaotic
Systems, PRL, volume. 64, No. 8, 821 (1990)

Recent interesting results suggest the possibility of extending
the synchronization concept to that of a metaphor for some
neural processes. Freeman has suggested that one should
view the brain response as an attractor. The process of
synchronization can be viewed as a response system that
"knows" what state (attractor) to go to when driven
(stimulated) by a particular signal. It would be 1nteresting to
see whether this dynamical view could supplant the more
"fixed-point" view of neural nets.




Questions? Comments?




