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Complex Networks



Network of Networks

Interconnected Networks

Interdependent Networks

Multiplex Networks

Multilayer Networks…



Power Grids



Intended Solution:

stable synchronized behaviour

along the whole network of 

networks



How to control such networks?

Pinning Control (which nodes?)

Highly Non-trivial Task

Monster blackouts

Failing of Control!!!



Stability



Stability of Dynamical Systems

Alexandr Mikhailovich Lyapunov 

(1857 – 1918)

• Student of P. L. Chebyshev and 

friend of A. A. Markov

• Master: On the stability of ellipsoidal 

forms of equilibrium of rotating fluids 

(1884) – french translation (1904)

• PhD: The general problem of the 

stability of motion (1892)

• 1893 – full Prof. Kharkiv Univ

• 1902 – St. Petersburg (followed 

Chebyshev)



Alexandr Mikhailovich Lyapunov

• Lyapunov was the first to consider modifications 

necessary in nonlinear systems to the linear 

theory of stability based on linearizing near a 

point of equilibrium

• The equilibrium xƐ of the system is said to be 

Lyapunov stable, if for every ( Ɛ > 0) and (

t0), there exists a δ = δ(t0, Ɛ) > 0 such that, 

if |x(t0)-xƐ|< δ, then |x(t)-xƐ|< Ɛ, for every t  0.

• Extension to asymptotical and exponential 

stability



Stability of Complex 

Networks 

(Synchronized Dynamics)



Weighted Network of  N Identical 

Oscillators

F – dynamics of each oscillator

H – output function

G – coupling matrix combining adjacency A and weight W

- intensity of node i (includes topology and weights)



General Condition for Synchronizability

Stability of synchronized state

N eigenmodes of

ith eigenvalue of G



Main results

Synchronizability universally determined by:

- mean degree K and

- heterogeneity of the intensities

- minimum/ maximum intensities

(Motter, Zhou, Kurths, PRL 2006)

or





Stability of Networks

Synchronizability –

Master Stability Formalism 

Pecora&Carrol (1998) –

based on local stability



Synchronizability Ratio

Stability Interval for coupling strength K

Synchronizability condition

Synchronizability – Master Stability Formalism 

(Pecora&Carrol (1998)



Stability/synchronizability in 

small-world (SW) networks

Small-world (SW) networks 

(Watts, Strogatz, 1998 – WS-networks)

F. Karinthy hungarian writer –

SW hypothesis (1929)



Small-world Networks

Nearest neighbour and a few 

long-range connections
k nearest neighbour

connections

Regular             Complex Topology



Chosen: a = b = 0.2, c = 7.0    R < 37.88

Chaotic Rössler oscillators, N = 100



Main Result: SW-Network best synchronizable 

for most random SW-networks

Puzzle!



MSF – local stability 

(Lyapunov stability)

How to go beyond (not 

only small perturbations)?

Lyapunov Functions?



Network ś Basin Stability

basin volume of a state (regime) 

measures likelihood of return to 

this state (regime) 

Nature Physics 9, 89 (2013)



Figure 1 Thought experiment: marble on a marble track. The track is immersed in a 

highly viscous fluid to make the system’s state space one-dimensional. Dashed arrows 

indicate where the marble would roll from each position. A, B and C label fixed points. 

Only B is stable. The green bar indicates B’s basin of attraction B. If the marble is 

perturbed from B to a state within the basin, it will return to B. Such perturbations are

permissible. Perturbations to states outside the basin are impermissible. The dashed 

parabola shows the local curvature around B, fitting the true marble track poorly in most 

of the basin.



Network ś Basin Stability

basin volume of a state (regime) measures the 

likelihood of 

- arrival at this state (regime) 

quantifies its relevance (M. Girvan, 2006)

- return to this state after a random perturbation

quantifies its stability

( Menck, Heitzig, Marwan, Kurths: 

Nat. Phys., 2013)



Normalized Network ś Basin 

Stability

- Synchronous state ś basin of attraction

- Subset of state space S covering the system ś  (weak) 

attractor

Normalized Basin Stability



- T experiments (different initial 

conditions – randomly distributed)

- M states converge to 

- Estimate M / T 

 standard error

- T=500  error < 0.023

Bernoulli-like experiment



Basin Stability for the Rössler 

System
Q := q**N   with q = [−15, 15] ×[−15, 15] ×[−5, 35]



averaged over coupling strengths K



Synchronizability and basin stability 

inWatts-Strogatz (WS) networks

of chaotic oscillators. 

a: Expected synchronizability R versus the 

WS model's parameter p. 

The scale of the y-axis was reversed to 

indicate improvement upon increase in p. 

b: Expected basin stability S versus p. The 

grey shade indicates  one standard 

deviation.

The dashed line shows an exponential 

fitted to the ensemble results for p > 0.15. 

Solid lines are guides to the eye. The plots 

shown were obtained for N = 100 

oscillators of Roessler type, each having on 

average k = 8 neighbours. Choices of 

larger N and different k produce results that 

are qualitatively the same.



Extension to delay-coupled 

systems

Scient. Rep., 2016



SW network, N = 100, chaotic Roessler oscillators, 6 

neighbours each (in average) 



Other Approaches 

• Basin stability refers to asymptotic behaviour

and requires multistability

• In many applications (cybersystems, power 

grids, brain…) transient behaviour more

important

• Apply concept of survivability

Basin of Survival

Scient. Rep. 2016



Penguin reaches goal in two way, but one 

via an undesirable state (due to cliff)

Basin of survival: all routes starting on top 

reaching the goal savely



Desirable region

Survivability S(t): 

Fraction of trajectories starting at         and staying 

within       the whole time [0 , t]

t-time basin of survival



New J. Physics, 2016









Stochastic Basin of attraction (SBA) 

for metastable states
• SBA – set of initial conditions where

solutions have a small probability of exits

from the neighbourhood of an attractor and

high probability of returns to it

• Calculation of these probabilities via elliptic

partial differential eq. with Dirichlet

boundary conditions

CHAOS 26, 073117 (2016)



Basic examples

• Three-well potential

• Genetic toggle system (Scient. Rep. 2016)

• Discontinuous systems (application: 

Amazonian vegetation) (Scient. Rep. 

2017)

• Transport of particles in rough ratchets

• CO oxidation on Ir (111) surfaces



Finding special behaviour

• Le v́y noise with larger jumps and lower 

jump frequencies (ɑ ≤ 0.5) enhances 

metastability (symmetric and asymmetric)

• Thermal noise stabilizes metastability in 

asymmetric potentials but reduces it in 

symmetric ones



Multistable mechanical systems



Basin stability analysis





BS Analysis



Multistable mechanical systems

• Generalized method for stability analysis

identification of parameter regions leading

to a certain regime of basin stability

Meccanica 2016


