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Complex Networks



Network of Networks
Interconnected Networks
Interdependent Networks

Multiplex Networks

Multilayer Networks...



Power Grids



Intended Solution:

stable synchronized behaviour
along the whole network of
networks



How to control such networks?
Pinning Control (which nodes?)
Highly Non-trivial Task
Monster blackouts

Failing of Control!!!



Stablility



Stability of Dynamical Systems

Alexandr Mikhailovich Lyapunov
(1857 — 1918)

Student of P. L. Chebyshev and
friend of A. A. Markov

Master: On the stability of ellipsoidal
forms of equilibrium of rotating fluids
(1884) — french translation (1904)

PhD: The general problem of the
stability of motion (1892)

1893 — full Prof. Kharkiv Univ

1902 — St. Petersburg (followed
Chebyshev)



Alexandr Mikhailovich Lyapunov

* Lyapunov was the first to consider modifications
necessary in nonlinear systems to the linear
theory of stablility based on linearizing near a
point of equilibrium

* The equilibrium X, of the system Is said to be
Lyapunov stable, if for every (V € > 0) and (V
t,), there exists a o = 0(t,, €) > 0 such that,

If |X(ty)-Xe|< O, then |x(t)-xg|< &, for every t > 0.
* Extension to asymptotical and exponential
stability



Stability of Complex
Networks

(Synchronized Dynamics)



Weighted Network of N Identical
Oscillators

N
x; = F(x;)+0) WiAi;[H(x;) — H(xy)],

j=1

N
= F(x;) -0 Y GyH(x;), i=1,...,N,
=1

F — dynamics of each oscillator
H — output function

G — coupling matrix combining adjacency A and weight W

Gij = —Wij fori # j Gii = Y, WijAij = 5,
3, - Intensity of node 1 (includes topology and weights)



General Condition for Synchronizability

Stability of synchronized state
{x; = s,Vil|s=F(s)}

N eigenmodes of
§; = [DF(s) — o \; DH(s)]&;,

A;i ith eigenvalue of G



Main results

Synchronizability universally determined by:

- mean degree K and

- heterogeneity of the intensities

Sﬂla}{ or Q

Smin Smin
S . g - minimum/ maximum intensities
Imin-» max:

(Motter, Zhou, Kurths, PRL 2006)
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Stability of Networks

Synchronizability —
Master Stability Formalism

Pecora&Carrol (1998) —

based on local stability



Synchronizability — Master Stability Formalism
(Pecora&Carrol (1998)

Synchronizability Ratio I = )\1'113&:/ Amin

Stability Interval for coupling strength K
K el = ((-1’5'1/)\1'11111: (-1’:2/)\111:511};)'

Synchronizability condition R < “2;”';"11



Stability/synchronizability In
small-world (SW) networks

Small-world (SW) networks
(Watts, Strogatz, 1998 — WS-networks)

F. Karinthy hungarian writer —
SW hypothesis (1929)



Small-world Networks

Nearest neighbour and a few

k nearest neighbour :
long-range connections

connections

Regular > Complex Topology



i =F(r) + K Z Ay[H(r;) — H(ry)] = F(r;) — K Z Li;H(r;).

g N




]
[a
S
I-E‘
s
m
N
c
o
=
]
c
oy
©
S
@
f

e
=

S

unstable
stable

improvement

—

stability threshold

0.2 0.4 0.6 0.8
WS rewiring probability p

-

regularity

—_—

randomness




MSF — local stabllity
(Lyapunov stabllity)

How to go beyond (not
only small perturbations)?

Lyapunov Functions?



Network's Basin Stability

basin volume of a state (regime)

measures likelihood of return to
this state (regime)

Nature Physics 9, 89 (2013)



Highly viscous fluid (honey) \
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Figure 1 Thought experiment: marble on a marble track. The track is immersed in a
highly viscous fluid to make the system’s state space one-dimensional. Dashed arrows
indicate where the marble would roll from each position. A, B and C label fixed points.
Only B is stable. The green bar indicates B’s basin of attraction B. If the marble is
perturbed from B to a state within the basin, it will return to B. Such perturbations are
permissible. Perturbations to states outside the basin are impermissible. The dashed
parabola shows the local curvature around B, fitting the true marble track poorly in most
of the basin.



Network's Basin Stabllity

basin volume of a state (regime) measures the
likelihood of

- arrival at this state (regime)
guantifies its relevance (M. Girvan, 2006)
- return to this state after a random perturbation
guantifies its stability
( Menck, Heitzig, Marwan, Kurths:
Nat. Phys., 2013)



Normalized Network s Basin
Stabllity

5 - Synchronous state’s basin of attraction

B={xeS&|di(x)—TI}

Q - Subset of state space S covering the system’s (weak)
attractor

Seno = Vol(BN Q)/Vol(Q) € [0,1]

Normalized Basin Stability



Bernoulli-like experiment

- T experiments (different initial
conditions — randomly distributed)

- M states converge to T
-Estimate M/ T
v oB(l — 5EB)

=» standard error «:= s

- T=500 =» error < 0.023



numerics +

1000 2000 3000 4000
T

. Error of the basin stability estimation. Red crosses indicate the
standard error of the numerical basin stability estimation for different
values of T. The dashed line shows the theoretical curve e(T') as given by
Eq. (2.35).




expected mean basin stability (S)

expected mean basin stability {S)
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Supplementary Figure S1: Basin Stability in Rossler networks. Expected basin stability (S)
versus p. | he grey shade indicates 4 one standard deviation. The dashed line shows an exponential
fitted to the ensemble results for p > 0.15. Solid lines are guides to the eye. a: N = 100, b:
N=200.
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Synchronizability and basin stability
iInWatts-Strogatz (WS) networks

of chaotic oscillators.

a. Expected synchronizability R versus the
WS model's parameter p.

The scale of the y-axis was reversed to
indicate improvement upon increase in p.
b: Expected basin stability S versus p. The
grey shade indicates one standard
deviation.

The dashed line shows an exponential
fitted to the ensemble results for p > 0.15.
Solid lines are guides to the eye. The plots
shown were obtained for N = 100
oscillators of Roessler type, each having on
average k = 8 neighbours. Choices of
larger N and different k produce results that
are qualitatively the same.
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Extension to delay-coupled
systems

Scient. Rep., 2016



7T=0.4



Other Approaches

» Basin stablility refers to asymptotic behaviour
and requires multistability

* In many applications (cybersystems, power
grids, brain...) transient behaviour more
Important

* Apply concept of survivability
=»Basin of Survival

Scient. Rep. 2016



Penguin reaches goal in two way, but one
via an undesirable state (due to cliff)

Basin of survival: all routes starting on top
reaching the goal savely



Desirable region X" C.X

Survivability S(t):
Fraction of trajectories starting at X~ and staying
within X~ the whole time [0, {]

t-time basin of survival X7

Vol(X )
Vol(X )

S(t) =



Stability threshold

Stability threshold is the minimal
perturbation kicking the system out
of the attraction basin:

o = Iinf {dist(x,y)|xeA4, yedB}




Stability threshold vs. basin stability

X n-dimensional
phase space
X 1
decay rate depends
X, on the system dimension
Nil A S B /
1 ;
|
|
|
|
|
|
|
|
|
|
|
|
0 l

o q
stability threshold

Perturbation class: magnitude < g



Stability threshold

Step 1. Reaching the border
Step 2. Moving along the border

c = dist(x,y,)




Global minimum vs. local minimums

Stability threshold
corresponds to the
global minimum:

G = miﬂ {01302363}

Variation of parameters:
tracing the minima

stability threshold c
0 >

paramelter




Stochastic Basin of attraction (SBA)

for metastable states

 SBA - set of Initial conditions where
solutions have a small probability of exits
from the neighbourhood of an attractor and
high probability of returns to it

 Calculation of these probabilities via elliptic
partial differential eq. with Dirichlet
boundary conditions

CHAOS 26, 073117 (2016)



Basic examples

Three-well potential
Genetic toggle system (Scient. Rep. 2016)

Discontinuous systems (application:
Amazonian vegetation) (Scient. Rep.
2017)

Transport of particles in rough ratchets
CO oxidation on Ir (111) surfaces



Finding special behaviour

* Le vy noise with larger jumps and lower
jump frequencies (a < 0.5) enhances
metastability (symmetric and asymmetric)

* Thermal noise stabilizes metastability in
asymmetric potentials but reduces it In
symmetric ones



LSS

Fig. 1 The model of the first considered system. Externally
forced Duffing oscillator with attached pendulum (tuned mass
absorber)
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Fig. 3 The model of the
third considered system.
Horizontally moving beam
with attached pendulums

m;lit;f}f +mXlcos @; + ¢ @; + miglsing; = Ny — ¢;N;
(2)

n
(M + Zmi)x + X + kyx

i=1

\ (3)
= Zm;l(—tjﬁi cos @; + (pf sin qof)
i=1
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Fig. 10 Probability of reaching given solutions in the system
with rotating pendula. Subplot a refers to the case with two
pendula and b with twenty pendula. (Please note that on plot
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(b) and its magnification the initial conditions and parameter are
somehow random, hence the results may slightly differ)




Multistable mechanical systems

* Generalized method for stablility analysis

=>» identification of parameter regions leading
to a certain regime of basin stability

Meccanica 2016



