

www.buzsakilab.com

Buzsaki, Stark, Berenyi, Khodagholy, Kipke, Yoon, Wise Neuron (2015)

Lognormal distribution of SPW-R durations

Antonio Fernandez-Ruiz

Azahara Oliva

SPW-Rs are longer in novel environments and memory tasks

Fernandez-Ruiz, Oliva, Oliveira, Rocha-Almeida, Tingley, Buzsaki, Science, 2019

Optogenetic prolongation of CA1 ripples

AAV-CaMkII-ChR2 injections in dorsal CA1 of rats

Fernandez-Ruiz, Oliva, Oliveira, Rocha-Almeida, Tingley, Buzsaki, Science 2019

Closed-loop ripple prolongation

Fernandez-Ruiz, Oliva, Oliveira, Rocha-Almeida, Tingley, Buzsaki, Science 2019

Memory task design

Inbound component:

Outbound component:

- "Reference" memory
- History independent
- "Working" memory
- History dependent

Prolongation of ripples improves memory

Truncating ripples deteriorates memory

Replicates previous report with closed-loop electrical disruption of SWRs (Jadhav et al., Science, 2012)

Optogenetic stimulation prolong ongoing place cell sequences

Hierarchy of crossfrequency phase coupling allows inter-regional transfer of information

Sirota, Csicsvari, Buhl, Buzsaki PNAS 2003

Boosting slow oscillations by transcranial electric stimulatioon during sleep potentiates memory

Marshall, Helgadóttir, Mölle Born Nature 2006

Diffuse spatial methods Transcranial electrical stimulation, TES; Transcranial magnetic stimulation, TMS; Transcranial ultrasound stimulation, TUS; Transcranial radio frequency stimulation

Neuronal mechanisms of TES

mechanisms

Liu, Vöröslakos,.... Buzsáki Nature Communications 2018

#3 Temporal bias of spikes by TES (in vivo > 1 V/m)

Ozen, Sirota, Belluscio, Anastassiou, Stark, Koch, Buzsaki **J Neuroscience** 2010

#4 Network entrainment

#5 Imposed pattern (closed loop seizure control by TES; rat)

TES (tACS) in patients with intracranial electrodes

TES (tACS) fails to entrain cortical rhythms

Lafon, Henin, Huang, Friedman, Melloni, Thesen, Doyle, Buzsaki, Devinsky, Parra, Liu **Nat Comm** 2017

Intracellular responses to transcranial stimulation

Transcutaneous vs transcranial stimulation (~5-fold difference)

and transcranial electric fields (mV/mm)

Transcutaneous vs transcranial stimulation in human cadavers

Intersectional short pulse (ISP) stimulation induces intracranial neuronal effects

Intersectional short pulse **(ISP)** stimulation in human subjects Reduced scalp effects, more intracerebral current delivery

Transcranial electrical stimulation (TES)

(i) Works! - under appropriate conditions

(ii) Intersectional pulse stimulation allows focused stimulation (increased brain/scalp current ratio)

 (iii) ~ 1 mV/mm voltage gradient is needed to entrain spikes and affect LFP (>4.5 mA scalp stimulation)

 (iv) Our results do not contradict the efficacy of TES by non-network-mediated mechanisms at lower stimulus intensities

Non-invasive RF stimulation of neurons

Non-invasive RF stimulation of neurons

Yaghmazadeh, Vöröslakos, Buzsáki SFN 2018

