Dynamics in a preconfigured brain ("We use 10 percent of our brain". Do we?)

www.buzsakilab.com

Canonical log brain rules

A fundamental rule of psychophysics, the Weber-Fechner (log) 'law', describes subjective perception as proportional to the *logarithm* of the stimulus intensity

Canonical log brain rules

A fundamental rule of psychophysics, the Weber-Fechner (log) 'law', describes subjective perception as proportional to the *logarithm* of the stimulus intensity

Wide dynamic range of synaptic weights, firing rates and population synchrony (*lognormal* distribution)

These dynamics occur on an anatomical substrate wherein the morphological connectivity within the network also displays *lognorma*l distributions.

Hierarchies of oscillators (In rule) allow brain operations at multiple temporal scales

Multiple interacting rhythms are at work in the brain

Buzsaki and Draguhn Science 2004

Lognormal distribution of firing rates (CA1 pyramidal cells)

multiply/divide random numbers

Buzsaki, Mizuseki, Nature Rev Neurosci 2014

Lognormal distribution of brain connectivity

Ho et al., Nature 2014

Log-normal distribution of axon diameters

Buzsaki, Mizuseki, Nature Rev Neurosci 2014 Courtesy of Sam Wang

Distribution of spine sizes shows log-normal distribution

Distribution of synaptic strengths shows log-normal distribution (in vitro)

Buzsaki, Mizuseki, Nature Rev Neurosci 2014

Song, Sjostrom Reigl Nelson Chklovskii PLoS Biology 2005 and courtesy of Carl Petersen

Kenji Mizuseki

Log-normal rate distribution in each layer and region of the EC-hippocampus and brain state

Buzsaki, Mizuseki, Nature Rev Neurosci 2014

Rate distributions in neocortex

Log firing rate correlations across 're-mapping'

Firing rate correlations between familiar and novel environments

Mizuseki, Buzsaki, Cell Rep 2013

Firing rate correlations between novel environment and sleep

Log representation of environments

How do downstream 'readers' interpret messages sent by skewed populations?

novel?

weak

familiar?

strong

5

3

R = 0.22 P < 0.00001

Log correlations between spontaneous and induced firing rates

Population level: magnitude of neuronal synchrony follows lognormal statistics

Buzsaki, Mizuseki, Nature Rev Neurosci 2014

These observations are not just statistical curiosities

The brain's attempt to reconcile conflicting demands among wide dynamic range, stability, robustness and plasticity, redundancy, resilience, degeneracy, homeostasis

Renart, Song, Wang Neuron 2003

Buzsaki, OUP 2019

sextiles of log rates

How are log distributions of firing rates brought about ?

How stable are rate distributions?

How are log distributions maintained ?

How are log distributions exploited for function ?

Slow and fast firing neurons are differentially regulated

Brendon Watson

Dan Levenstein

Members of the slow and fast tails of the firing rate distribution are segregated in time during sleep

Hypothesis: slow and fast firing neurons are differentially affected by STDP

Sleep Plasticity

- Fast and slow firing neurons synchronize differently - STDP - segregation
- The two tails of the distribution are regulated by different mechanisms

sextiles of log rates

Functions for skewed distributions

Firing rates correlate with learninginduced changes

Andres Grosmark

Wilson, McNaughton, Science 1994 Dragoi, Tonegawa, Science 2011

Per cell contribution (PCC) index

P.C.C. = [*rZ*(*observed*) – *rZ*(*cell shuffle*)]xNCells

1.6 m Ο. 2 0 Position (m)

Linear Maze:

New place cells are added onto a backbone of pre-existing place cell sequence

Low

contribution (rigid - fast)

High contribution (plastic -slow)

Slow firing place cells increase their spatial specificity over trials in a novel environment

Local circuit and intrinsic properties affect firing patterns

Eran Stark

dorsal CA1

Simplicity is the ultimate form of sophistication

- Leo Da Vinci

- Every ready, "good enough brain" for most situations versus "careful, detail-oriented brain"
- Fast decision versus slow precision
- Rigid minority versus plastic majority
- Generalizers versus specialists

GYÖRGY BUZSÁKI

Author of the seminal Rhythms of the Brain

Oxford Univ Press 2019

Amazon.com

Bo Hu

Only low firing rate neurons are affected by learning

