Disentagling respiratory, cardiogenic and vasomotor rhythms from dynamic infrared thermogram signals

Laboratoire Ondes et Matière d'Aquitaine, Bordeaux, France

Françoise Argoul Alain Arneodo Léo Delmarre Alexandre Guillet Etienne Harte Stefano Polizzi

Ecole Normale Supérieure de Lyon, Lyon, France Benjamin Audit Stephane Roux

Laboratoire MAST-IFFSTAR Champs sur Marne, France Pierre Argoul

Institute of Continuous Media Mechanics, Perm, Russia

Evgeniya Gerasimova-Chechkina **Oleg Naimark**

Perm State Academy of Medecine, Perm, Russia Olga Gileva

E. Gerasimova et al., EPL 104 (2013) 68011 E. Gerasimova et al., Frontiers in Physiology 5 (2014) 176

Scaling behavior of heartbeat intervals Ivanov et al. Nature 1996

Network Physiology ->

Network Topology <-> Physiological Function Bashan Nature Communications 2012

Disentagling respiratory, cardiogenic and vasomotor rhythms from dynamic infrared thermogram signals

IR thermography to assist cancer diagnosis

...... -> IR thermography video film

E. Gerasimova et al., EPL 104 (2013) 68011 E. Gerasimova et al., Frontiers in Physiology 5 (2014) 176

• Characterization of the physiological noise of thermogram signals

- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact on both the spatial position and temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms

PLAN OF THE PRESENTATION

- Characterization of the physiological noise of thermogram signals
	- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact both the spatial position and skin temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms
- Characterization of the physiological noise of thermogram signals
	- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact both the spatial position and skin temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms

Respiratory and cardiogenic functions impact both the spatial tissue position and skin temperature

Wavelet transform for time-frequency analysis of rhythmic signals

$$
\mathcal{W}_{\psi}[s](a,t;p) = \int_{-\infty}^{+\infty} s(t') a^{-\frac{1}{p}} \overline{\psi}\left(\frac{t'-t}{a}\right) dt'
$$

 Ψ *Wavelet function (in time variable) (the bar corresponds to the complex conjugate)* translation parameter

- $\tilde{\psi}(f)$ *a1* $\frac{a_2}{a_1}$ ^{10°}
Frequency, *f* $10⁰$ 10^{-1} 10 0.5 $\psi(t)$ -0.5 *t2* $\overset{\bullet}{\mathbf{t}}_{1-\text{Time},\; t}^{\text{2}}$ -2
- $R_{\rm eff}$ is the cardiogenic functions in the case of ϵ and ϵ and ϵ and ϵ and ϵ and ϵ and ϵ *<i>a scale parameter* ($a = f_0/f$)
- *p normalization exponent*

Q= (nγ)1/2 quality factor The larger Q, the sharper the wavelet *in frequency domain*

Log-normal Morse wavelet: $y = 0$, $ny = 1$

$$
\tilde{\psi}_Q(f'/f) = e^{-\frac{1}{2}(Q\log f'/f)^2}
$$

This wavelet is symmetric in frequency space It is parametrized by the quality factor Q

Wavelet transform for time-frequency analysis of rhythmic signals

PERIODIC SIGNAL (pure sinus)

RANDOM SIGNAL (no rhythms)

Wavelet transform analysis of model signals

Wavelet transform analysis of model signals

 $S(t) = \sin(f t) + \sin((f + \delta f)t)$

Wavelet transform analysis of model signals: frequency duets

 $S(t) = \sin(f t) + \sin((f + \delta f)t)$

 $S(t) = \sin(f t) + \sin((f + \delta f)t)$

- Characterization of the physiological noise of thermogram signals
	- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact both the spatial position and skin temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms

Global selection of the two breasts $(R - L)$ with ellipse-like shapes

Influence of the quality factor Q on the detection of the rhythms

Comparison of right (cancerous) and left (healthy) breast global temperature signals

Focusing on the respiratory rhythm fundamental on the same patient (red: cancer breast, blue healthy)

PLAN OF THE PRESENTATION

- Characterization of the physiological noise of thermogram signals
	- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact both the spatial position and temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms

Translation and Affine algorithm to extract these displacements

PLAN OF THE PRESENTATION

- Characterization of the physiological noise of thermogram signals
	- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact both the spatial position and temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms

Comparison of time-frequency decomposition of uncorrected and corrected signals

Comparison of time-frequency decomposition of uncorrected and corrected signals

Comparison of time-frequency decomposition of uncorrected and corrected signals

Detection of the ridges of the CWT (from the magnitude or modulus of the CWT)

Detection of the ridges of the CWT (comparing modulus and phase difference methods)

Detection of the ridges of the CWT (comparing modulus and phase difference methods)

PLAN OF THE PRESENTATION

- Characterization of the physiological noise of thermogram signals
	- singularity spectra computation based on the wavelet modulus maxima method in both healthy and cancer cases (local temperature averaged on 8x8 pixel squares)
- Disentangling respiratory, cardiogenic rhythms from thermogram signals
	- Respiratory and cardiogenic functions impact both the spatial position and temperature
	- Time-frequency analysis based on temporal temperature signals averaged over the whole breast
	- Translation and Affine algorithm to extract these displacements
	- Comparing the time-frequency analysis before and after the correction
	- Disentangling respiratory from cardiogenic rhythms

Recognition of the presence of two (or more rhythms) inside the signal: multiplicative cross-correlation of the modulus of the CWT in the frequency variable f (the integral is performed in log(f) scales)

Here we take $s_1 = s_2$, the log-frequency variable for s_2 is shifted by log(q)

$$
R_\psi[s_1,s_2](q,t) = C_{\psi,\psi}^{-1} \int_0^\infty |W_\psi[s_1](f,t)W_\psi[s_2](qf,t)|\mathrm{d} f/f \quad,
$$

where $C_{\psi,\psi} = \int_0^\infty |\tilde{\psi}(f)|^2 df/f.$

 $\mathbf{E}(\mathbf{q},t) = R_{\psi}[s_1,s_2](q,t)$ is the spectrum of relations of the two signals s_1 and s_2

Identification of irreducible fractions of the frequency ratios occuring in the spectrum of relations of the signal with itself $\rightarrow \infty$ consonance of the rhythms »

Searching for the "consonance" of a synthetic signal

CWT analysis of photoplethysmogram signals

Signals downloaded from http://www.capnobase.org/index.php?id=857

Wavelet based computation of consonance of photoplethysmogram signals

Signals downloaded from http://www.capnobase.org/index.php?id=857

CWT analysis of photoplethysmogram signals

Signals downloaded from http://www.capnobase.org/index.php?id=857

Wavelet based computation of the consonance of a thermogram signal

CONCLUSIONS

Time-frequency decomposition allows a complete characterization of the intertwining of rhythms in physiology

The introduction of consonance (or disonance) of rhythm ratios and its temporal change (or variability) as a marker of the dynamical adjustement of the body

Can this quantity be used as a 'dynamical' hint for assisting clinician diagnosis?

Statistical tests on large data sets need to be performed

A statistical physics formalism accounting for the spectrum of rhythm ratios is currently under progress (in the same line as the singularity spectrum has be elaborated for fractal signals)