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Disentagling	respiratory,	cardiogenic	and	vasomotor	rhythms	
from	dynamic	infrared	thermogram	signals	



Physiological networks : the inter-node dynamics complexity is the issue  

Scaling	behavior	of	heartbeat	intervals		
Ivanov	et	al.	Nature	1996	

(time-frequency	analysis)	

Network	Physiology	->	
Network	Topology	<->	Physiological	Function	
Bashan	Nature	Communications	2012	



Disentagling respiratory, cardiogenic and vasomotor rhythms from dynamic infrared thermogram signals 

Breast thermogram Temperature time series 
Infrared camera 

E.	Gerasimova	et	al.,	EPL	104	(2013)	68011	
E.	Gerasimova	et	al.,	Frontiers	in	Physiology	5	(2014)	176	

IR	thermography	to	assist	cancer	diagnosis		

......	->	IR	thermography	video	film	



• Characterization	of	the	physiological	noise	of	thermogram	signals	
•  singularity	spectra	computation	based	on	the	wavelet	modulus	maxima	method	in	both	
healthy	and	cancer	cases	(local	temperature	averaged	on	8x8	pixel	squares)	

• Disentangling	respiratory,	cardiogenic	rhythms	from	thermogram	signals	
•  Respiratory	and	cardiogenic	functions	impact	on	both	the	spatial	position	and	temperature	
•  Time-frequency	analysis	based	on	temporal	temperature	signals	averaged	over	the	whole	
breast	

•  Translation	and	Affine	algorithm	to	extract	these	displacements	
•  Comparing	the	time-frequency	analysis	before	and	after	the	correction	
•  Disentangling	respiratory	from	cardiogenic	rhythms	

PLAN OF THE PRESENTATION 



τ (q) = −c0 + c1q− c2q
2 / 2

D(h) = c0 − (h− c1)
2 / 2c2

Multifractal spectra of cumulative IR temperature time series 

Cancer 	 	[c0,	c1,	c2]=[0.99,	0.81,	0.0044]		

Opposite	 	[c0,	c1,	c2]=[0.99,	1.23,	0.080]	

Healthy 	 	[c0,	c1,	c2]=[0.99,	1.171,	0.069]		

Average	over	8x8	pixel2	
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Respiratory	and	cardiogenic	functions	impact	both	the	spatial	tissue	position	and	skin	temperature	

HORIZONTAL	SECTIONS	

TEMPERATURE	SIGNALS	 TEMPERATURE	SIGNALS	



Wavelet	transform		for	time-frequency	analysis	of	rhythmic	signals	

Respiratory	and	cardiogenic	functions	impact	on	both	the	spatial	position	and	temperature	

ψ			Wavelet	function	(in	time	variable)		
																(the	bar	corresponds	to	the	complex	conjugate)			
t			translation	parameter	

a				scale	parameter	(	a	=	f0/f)	 x	 x	Morse	wavelet	 0	if	f<0	
p				normalization	exponent	

Q=	(nγ)1/2	quality	factor	
The	larger	Q,	the	sharper	the	wavelet	
in	frequency	domain		

t1	 t2	

a2	
a1	

n=100	

n=4	



Wavelet	transform		for	time-frequency	analysis	of	rhythmic	signals	

Log-normal	Morse	wavelet:	γ	=	0,	nγ	=	1	

This	wavelet	is	symmetric	in	frequency	space	
It	is	parametrized	by	the	quality	factor	Q	



Wavelet	transform		for	time-frequency	analysis	of	rhythmic	signals	

x	

TIME	SERIES	 TIME	SERIES	

Power	spectra	computed	from	the	wavelet	transform	

Color	coded	images	of	the	modulus	of	the	wavelet	transfom	

Wavelet:		
Morse	function	
n=32,	ϒ=1	
p=1	

RESPIRATION	~	3.45Hz	

RESPIRATION	

1.71Hz	
	3.45Hz	

3.45/2	~1.7	Hz	

0.8	Hz	

~0.8	Hz	



Wavelet	transform	analysis	of	model	signals	

Respiratory	and	cardiogenic	functions	impact	on	both	the	spatial	position	and	temperature	

PERIODIC	SIGNAL	(pure	sinus)	



Wavelet	transform	analysis	of	model	signals	

RANDOM	SIGNAL	(no	rhythms)	



Wavelet	transform	analysis	of	model	signals	



Wavelet	transform	analysis	of	model	signals	



Wavelet	transform	analysis	of	model	signals:	frequency	duets	

S(t)	=	sin(ft)	+	sin((f+δf)t)	
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Wavelet	transform	analysis	of	model	signals:	frequency	duets	

S(t)	=	sin(ft)	+	sin((f+δf)t)	
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PLAN OF THE PRESENTATION 



Global	selection	of	the	two	breasts	(R	–	L)	with	ellipse-like	shapes	



Influence	of	the	quality	factor	Q	on	the	detection	of	the	rhythms	

Q=	(nγ)1/2	quality	factor	
The	larger	Q,	the	sharpest	the	wavelet	in	
frequency	domain		

High	quality	factor	
Q	=	16		

medium	quality	factor	
Q	=	4	

Low	quality	factor	
Q	=	1.4	



Playing	on	the	wavelet	function	parameters	to	reveal	both	respiratory	and	cardiac	rhythms	
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Playing	on	the	wavelet	function	parameters	to	reveal	both	respiratory	and	cardiac	rhythms	



Comparison	of	right	(cancerous)	and	left	(healthy)	breast	global	temperature	signals	



Comparison	of	right	(cancerous)	and	left	(healthy)	breast	global	temperature	signals	

Focusing	on	the	respiratory	rhythm	fundamental	on	the	same	patient	(red:	cancer	breast,	blue	healthy)	

Wavelet	transform	amplitude	modulus	

Skewed	distributions	
	(long	tails)	

Temporal	evolution	of	the	instantaneous	frequency	
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Translation	and	Affine	algorithm	to	extract	these	displacements	
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Comparison	of	time-frequency	decomposition	of	uncorrected	and	corrected	signals	

Uncorrected	signals	
N=256	
p=1	



Comparison	of	time-frequency	decomposition	of	uncorrected	and	corrected	signals	

Corrected	signals	
N=256	
p=1	



Comparison	of	time-frequency	decomposition	of	uncorrected	and	corrected	signals	

Transformation	
Affine	matrix		
determinant		
N=256	
p=1	



Detection	of	the	ridges	of	the	CWT	(from	the	magnitude	or	modulus	of	the	CWT)	

Q=32	



Detection	of	the	ridges	of	the	CWT	(comparing	modulus	and	phase	difference	methods)	



Detection	of	the	ridges	of	the	CWT	(comparing	modulus	and	phase	difference	methods)	



• Characterization	of	the	physiological	noise	of	thermogram	signals	
•  singularity	spectra	computation	based	on	the	wavelet	modulus	maxima	method	in	both	
healthy	and	cancer	cases	(local	temperature	averaged	on	8x8	pixel	squares)	

• Disentangling	respiratory,	cardiogenic	rhythms	from	thermogram	signals	
•  Respiratory	and	cardiogenic	functions	impact	both	the	spatial	position	and	temperature	
•  Time-frequency	analysis	based	on	temporal	temperature	signals	averaged	over	the	whole	
breast	

•  Translation	and	Affine	algorithm	to	extract	these	displacements	
•  Comparing	the	time-frequency	analysis	before	and	after	the	correction	
•  Disentangling	respiratory	from	cardiogenic	rhythms	

PLAN OF THE PRESENTATION 



Disentangling	respiratory	from	cardiogenic	rhythms	

Respiratory	and	cardiogenic	functions	impact	on	both	the	spatial	position	and	temperature	

Recognition	of	the	presence	of	two	(or	more	rhythms)	inside	the	signal:	multiplicative	cross-correlation		
of	the	modulus	of	the	CWT		in	the	frequency	variable	f		(the	integral	is	performed	in	log(f)	scales)	
	
Here	we	take	s1	=	s2	,	the	log-frequency	variable	for	s2		is	shifted	by	log(q)	

		

is	the	spectrum	of	relations		of	the	two	signals	s1	and		s2			

Identification	of	irreducible	fractions		of	the	frequency	ratios	occuring	in	the	spectrum		
of	relations	of	the	signal	with	itself	->		«	consonance	of	the	rhythms	»	

E(q,t)	=		



Searching	for	the	“consonance”	of	a	synthetic	signal	

Rhythm	ratios	
[1]	1	
[2]	√2	
[3]	3/2	
[4]	(√5	+1)/2	(golden)	
[5]	2	

[1]		[2]		 [3]		 [4]		 [5]		

[2]		 [3]		 [4]		 [5]		 [1]		

[3]	 [4]	



CWT analysis of photoplethysmogram signals 

Signals	downloaded	from		
http://www.capnobase.org/index.php?id=857	

W.	Karlen	et	al.,	IEEE	trans.	
	on	biomed	Eng.	2013,	



Wavelet based computation of consonance of photoplethysmogram signals 

Signals	downloaded	from		
http://www.capnobase.org/index.php?id=857	

W.	Karlen	et	al.,	IEEE	trans.	
	on	biomed	Eng.	2013,	



CWT analysis of photoplethysmogram signals 

Signals	downloaded	from		
http://www.capnobase.org/index.php?id=857	

W.	Karlen	et	al.,	IEEE	trans.	
	on	biomed	Eng.	2013,	



Wavelet based computation of the consonance of a thermogram signal 



CONCLUSIONS 

Time-frequency	decomposition	allows	a	complete	characterization	of	the	intertwining	of	rhythms	in	physiology	
	

The	introduction	of	consonance	(or	disonance)	of	rhythm	ratios	and	its	temporal	change	(or	variability)		
as	a	marker	of	the	dynamical	adjustement	of	the	body		

	
Can	this	quantity	be	used	as	a	‘dynamical’	hint	for	assisting	clinician	diagnosis?		

	
Statistical	tests	on	large	data	sets	need	to	be	performed	

	
A	statistical	physics	formalism	accounting	for	the	spectrum	of	rhythm	ratios	is	currently	under	progress	

(in	the	same	line	as	the	singularity	spectrum	has	be	elaborated	for	fractal	signals)	
	
	


