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Segregation-Integration

Systems neuroscience description of brain:
Networks

BRAIN CONNECTIVITY:

Anatomical (structural) connectivity
*Functional connectivity

*Effective connectivity



Structural connectivity

Levels of structural connectivity

*Microscale (micrometer)
*Mesoscale (0.1 millimeter)
*Macroscale (>= 1 millimeter)

Connectivity Is a scale dependent notion



Functional Connectivity

 Statistical dependency between neuronal
units (also distant ones)

* Highly dynamic (unlike structural conn.)
* Symmetric

-

FC Is a superposition of the interaction effects coming from

structural connectivity (real physical connections) plus the effects
coming from having a common functionality.



Effective connectivity

It is important not only to detect functional relations, but also to
identify cause-effect (drive-response) relationships between
neuronal units.

-

Functional:

A




The relation structure-function

 Which are the properties of structural
networks that allow them to support a huge
number of different functional patterns?

* Dynamical state is critical? Should be weakly
dependent on details of the underlying
structural connectivity

* Many others



functional connectivity: Synchronization

Synchronization is the

coordination of events to
operate a system in unison.



Hyper-synchronization of EEG in
migraine under visual stimulation
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We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic
signal technique, based on the Hilbert transform, and find that migraine brains are characterized by

enhanced alpha band phase synchronization in the presence of visual stimuli Our findings show that
migraine patients have an overactive regulatory mechanism that renders them more sensitive to external

stimuli.
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Effective connectivity



X and Y two (vectorial) time series

X, the future values of X



1969: Granger causality

Definition: Y Is cause of X if the
knowledge of Y allows to make more
precise prediction about X

This definition is meaningful only for
irreversible processes, the direction of time
Is needed.



Absence of causality:
Generalized Markov property

P(x| X)=P(x| X,Y)



Transfer entropy (schreiber 2000)

Measuring the violation of the generalized Markov property:

P(x|X,Y)
P(X

dxdXdY

T(Y - X):j P(x, X,Y)log

T measures the information flowing from one series to the other.

T is connected but not equivalent to coupling



Transfer entropy
S =] dxdXp(x, X)log[p(x | X)]
Sy =—[ dxdXdYp(x, X,Y)log[ p(x| X,Y)]
Regression

E, = [ dxdX p(x, X)(x— [ dx p(x| X)x'f

E,o, = [ dxdXd¥p(x, X, Y)(x— [ dx p(x| X, Y)x'f



For Gaussian variables (Barnett et al., PRL 2009)

Granger causality = 2 Transfer Entropy

For linear systems, there is complete
equivalence of the notions of Granger
causality and transfer entropy.

Unifies information-theoretic and autoregressive
approaches, GC measures the flow of information

Analytical expression for transfer entropy-GC



Nonlinearity: kernelization

Using the theory of Reproducing kernel Hilbert spaces, the new formulation
can be generalized to the nonlinear case.
The inner product is to be replaced by a suitable kernel function with

spectral representation:

K(x,2") = Z Nip(x)p(a') = Z di(x)pi(x”)
i ;

Kij = K(Xi,Xj) Kij =K(Z;,Z))

Equivalent to perform linear granger causality in the
space of the eigenfunctions of K

Marinazzo, Pellicoro, Stramaglia, Physical Review Letters 2008



Nonlinear approach:
Symbolic Transfer Entropy
(Lehnertz et al.)



Example of application of the method

Pair of noisy logistic maps:

Tpntl = a (1 — :r,,%) + STp41,
Ynt+1 — (1 — 6)& (1 — y,ﬁ) + ea (1 — .T,i) -+ S£n+l;
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Oceanography

Detecting Causality In
Complex Ecosystems

George Sugihara,™* Robert May,” Hao Ye," Chih-hao Hsieh,>* Ethan Deyle,"
Michael Fogarty,* Stephan Munch’

496 26 OCTOBER 2012 VOL 338 SCIENCE www.sciencemag.org



dx/dt=(A—-By)x
dy/dt=(Cx—D)y

Lotka Volterra
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Fig. 5. Detecting causation in real time series. (A) Abundance time series of Paramecium aurelia and
Didinium nasutum as reported in (28). (B) CCM of Paramecium and Didinium with increasing time-series
length L. The pattern suggests top-down predator control. (€) California landings of Padcific sardine
(Sardinos sagax) and northern anchovy (Engraulis mordax). (D to F) CCM (or lack thereof) of sardine versus
anchovy, sardine versus SST (Scripps Pier), and anchovy versus SST (Newport Pier), respectively. This shows
that sardines and anchovies do not interact with each other and that both are forced by temperature.



Information flow pattern (NxN matrix)




Networks Motifs (Alon, 2003)

Characteristic network building blocks

Small connected subgraphs that occur
significantly more frequently than in
randomized networks

Transcription networks, signal transduction
networks

Brain networks: small set of structural motifs,
large number of functional motifs
(Sporns,Bullmore)



Mining informational motifs from data

* Possible strategy: Transfer Entropy -> Graph ->
Motifs of the graph

* Problem: the presence of redundant variables
renders the performance of multivariate
transfer entropy poor
(Angelini,Pellicoro,Stramaglia, PRE 2010)

 Multiplets of variables, constituting
informational circuits, must be sought for
directly from time series data



Expanding the transfer entropy

Formal expansion of the transfer entropy to put in evidence
irreducible sets of variables which provide information for
the future state of each assigned target

*Multiplets characterized by a large contribution to the
expansion are associated to informational circuits present in
the system, with an informational character (synergetic or
redundant) which can be associated to the sign of the
contribution.

*For the sake of computational complexity, we adopt the
assumption of Gaussianity and use the corresponding
exact formula for the conditional mutual information.



INTERACTION INFORMATION:
Informational character of circuits
of three variables

R(x,y,z)=1(x;z)+1(y;z) —]({x,y};z)



Example: s stimulus, rl and r2 the response from two brain
areas

R=0 Information Independence

1({r,,r, };s)=1(r;s)+ I(r,;s)

The two brain areas are sensitive to completely different features of
the stimulus

E. Schneidman, W. Bialek, M.J. Berry, J. Neuroscience 23,11539 (2003).



R<0 Synergy

1({r,,r,};s)> 1(r;s)+ 1(r,;s)

The joint response from the two brain areas
conveys more information than treating them
separately

S Is a function of both rl1 and r2



R>0 Redundancy

1({r,,r, kis)< I(r;s)+1(r,;s)

The two brain areas are sensitive to the same features of
the stimulus

The two responses rl and r2 share a certain amount of
common information about the stimulus



Flow of information

S (xo[{Ykik=1) = S(wo) = =1 (x0; 1Yk i=1)

S (@ol1Yrtizy) — Sxo) =

Z AS(:I?O) | Z AQS(LE{]) L] A?T"S(:I?Q)
) AYE ! ?:>j AY;AY | ! AY;AYH




Conditioning on the past of the target

Cy,S(X) = S(X1Y)

S (wol{ Yk bizy: Yo) — S(xo|Yo) = =1 (wo; {Y }ji—1[Y0) =

Z AS(zg|Yy) | Z A% S(z0|Yo) . A"S(z0]Yo)




First terms in the expansion

40 _ AS(x0|Y0)
‘ AY;
By: = I (x0; Y;|Yo) — I (x0: Y;|Y;, Yo)

= —1 (z0; Y:|Y0)

Co = T (20: Y|V}, Y0) 4+ I (20;Y5|Ys, Yo)
—I (20;Y;|Yo) — I (x0: YilY;, Yi, Yo)



A" %Y

AYi AYi * 'AY'

1 2 In

Symmetrical under permutations of variables
‘Independence among any of the Y results in vanishing
contribution

Each nonvanishing term provides an irreducible set of
variables which send information to the target variable
*The sign of the contribution is related to the
Informational character: positive for redundancy,
negative for synergy



Epilepsy: scalp EEG

interictal




TBI analysis: healthy controls are characterized by a greater amount of
synergetic contributions from duplets of variables, w.r.t vegetative state,
minimally conscious state, and emergence of the minimally conscious state
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D. Marinazzo et al, Clinical EEG and neuroscience 2014



Partial Information
Decomposition

Is it possible to separate a redundant and a synergetic contribution?

Is it possible to estimate an unigue information coming from each variable?

Two variables are drivers, one Is the target



Information Transfer Decomposition
7;%]' — I(len;Yi;z‘Yj;z)

7;k—>j — I(Yj,n}y'_ Y, ‘Y‘,_n)

I’ KN

Joint Transfer Entropy

7;k—>j — 7;%]' T 7?(%]' + Lk al

Interaction Information Transfer
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Partial Information Decomposition

7;k—>j — Z/{z'—>j T Mk—>j T 7?/z'k—>j T Sik%jz
Tiesj = Ui—j+ Rik—j,
7?(%]' — Z/{k—>j T Rz’k%j-

Lik—j = Sik—j — Rik—j

41



One more relation Is needed to
solve all the quantities.
Shannon information theory
does not univocally determine
this decomposition

Minimum M Rik%j — mln{lzﬁ]/ lﬁc%]}

“Nonnegative Decomposition of Multivariate Information”
Paul L. Williams, Randall D. Beer
-M. Wibral, J. Lizier, ....
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Partial Information Decomposition

(C) Tl:k—)» ]
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ECoG recording.
An 8 x 8 electrode
grid is placed
directly on the
cortical surface and
recordings are
made usually for
several days or
even weeks.

Kramer, M.A., Kolaczyk,
E.D., and Kirsch, H.E.
(2008). Emergent network
topology at seizure onset in
humans. Epilepsy
Research,79, 173-186.
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Drivers: depth electrodes 11 and 12. Target: Cortical electrodes
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Synergistic IT pre
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TE from 11 pre
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Unique IT from 11 pre
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Conclusions

Causal interactions occur at multiple scales and involve informational circuits
of multiplets of variables.

New approaches are under development to identify redundant, synergetic
and unique contributions to the total information flow

@ Barrett 2015: Exploration of synergistic and redundant information sharing in static and dynamical
Gaussian systems (PRE) https://arxiv.org/abs/1411.2832

@ Faes et al. 2016: Predictability decomposition detects the impairment of brainheart dynamical networks
during sleep disorders and their recovery with treatment (PTRS A)
http://rsta.royalsocietypublishing.org/content/374/2067/20150177

@ Stramaglia et al. 2014: Synergy and redundancy in the Granger causal analysis of dynamical networks
(NJP) http://iopscience.iop.org/article/10.1088/1367-2630/16/10/105003

@ Stramaglia et al. 2016: Synergetic and Redundant Information Flow Detected by Unnormalized Granger
Causality (IEEE TBME) https://arxiv.org/abs/1504.03584

@ Faes et al. 2017: Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian
Processes https://arxiv.org/abs/1706.07136
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