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‘Information’ in the nervous system

- ‘external’ impulses: information sent out to trigger: exponential decay in time 
- ‘internally retained information’: dynamically stored information, e.g. containing the form of 

the trigger (words): slower than exponential decay is required 
- (not considering chemically stored information) 
!
 
Typical dynamical systems (information: initial condition): 
!
!
!
!!!
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time to space conversion
- sequential state update along trajectory 
!
!
!
!
!!!

‘frozen’     patterns of all sizes     system forgets 
system does not  
change                      

I II III

II:’critical’ system state, states clearly distinguished (e.g. by transfer operator spectrum) 
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properties
- optimal state for living systems 

(‘edge of chaos’, D.Farmer, C.Langton) 
!
- dynamically: chaos in dynamical sense: zero Lyapunov exponent, but  

system has memory, can be unstable & complex 
known: often: power-law distributed values of finite-time LE with distinct power-law 
exponents (we do not consider ‘self-organized criticality universality’) 

- topologically: if states are associated with ‘active’ and ‘silent’,  
we obtain ‘firing avalanches’: firing sequences of all sizes,  
with power-law distributed probabilities 

!
!

Are these characterizations always the same?  
If not: Are there simple examples?
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hypocampal neuronal culture development
Culture 1 (800 cells/mm2, 30um electrodes, dataset 15.03.2016 MEA0)
Interspike interval distributions (histogram bin size = 5 msec)

We see a transition in the shape of the interspike interval distribution: from a 
distribution resembling an exponential (day 12-13) to a distribution closer to 
a power-law (day 14-15, 20). The slope of the distribution in the range 
[10,500] msec is approx. 1.75 at day 14-15, and 1.6 at day 20.
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Transformation shape of interspike interval distributions: exponential (DIV 12-13)  
towards power-law (DIV 14-15, 20). Power-law slope:1.75 (DIV) 14-15, and 1.6 (DIV 20).	
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culture development

Transformation shape of interspike interval distribution: exponential (DIV 12-13) towards power-law (DIV 
14-15, 20). Power-law slope:1.75 (DIV) 14-15, and 1.6 (DIV 20). 800 cells mm^2.	

Culture 2 (800 cells/mm2, 30um electrodes, dataset 15.03.2016 MEA1)
Interspike interval distributions (histogram bin size = 5 msec)

The transition of the distribution shape for Culture 2 appears to follow a 
qualitiatively similar path to Culture 1: the distribution approaches a power-law 
relationship. The slope in the range [10,500] at day 20 is approx. 1.8.
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testing criticality co-occurrence hypothesis
Caveats: 
!
1) coupled systems often deviate from the nature of the constituents

s2

s1 two diffusely coupled parabola
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2) Critical states do not exist in nature   
!
finite size problem (no thermodynamic limit) 
 
biology:  
-  open systems (they react upon external input)  
several levels of hierarchies 
at each level of the hierarchy, ‘whatever architecture works’ is used - non-scaling 
!
Approximative scaling approach   

consider scaling only across the range directly related to the scale of the model  
(in what follows: cortical columns)  
cortical hierarchy can display properties ascribed to critical systems nonetheless,  
if each hierarchy level optimizes its behavior at its own level 
!
We call states ‘critical’, if they sufficiently share (topologically or dynamically) the statistical 
properties of finite size states of systems close to a (provable) critical point. 

Such properties are:  

- scaling within system size 
- relations between critical exponents !
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Scaling Brain Size, Keeping Timing: Evolutionary Preservation of 
Brain Rhythms	
Gyorgy Buzsaki,1,* Nikos Logothetis,2 and Wolf Singer3 
1The Neuroscience Institute, Center for Neural Science, School of Medicine, New York University, New York, NY 10016, USA 
2Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Imaging Science and Biomedical Engineering, 
University of Manchester, Manchester, UK 
3Max Planck Institute for Brain Research (MPI), Ernst Struengmann Institute for Neuroscience in Cooperation with the Max 
Planck Society, Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany 

!
Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the 
hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communica- tion 
within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of 
large-diameter axons of long-range neurons could be a key factor in the preserved time man- agement in growing 
brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, 
and interventional therapies.	
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strategy
- counter-example: suffices: one system, one parameter set (Chaos 27, 047408, 2017) 

!
- genericity: ensembles, parameter intervals, if possible intrinsic explaining arguments 
!
!

5

recurrent network
noise input

excitation
inhibition
leader neuron

a) b)

neuron j

ne
ur

on
 i

1 128

128

1

FIG. 1: Network architecture [47]: a) Recurrent network with excitatory neurons (red circles), inhibitory neurons (blue circles) and one
intrinsically firing excitatory neuron (yellow circle) representing entrant sensory stimulation. Each neuron also receives noisy excitatory input,
from a Poisson spike train. b) Weight matrix w of the network, with excitatory connections (red) and inhibitory connections (blue). Grey lines
are for the last excitatory neuron (index j = 102).

I.e., neuron i is firing at iteration n, if x(i)
n attains the maximum value of the map (red horizontal line in Fig. 2a)). Synapses have

their own dynamics that can be modeled by an exponential decay and step-like increase upon presynaptic spike events as

I(i)
n+1 = ⌘I

(i)
n +W

✓ NexX

j=1

wi j(xex
rp � x(i)

n )⇠( j)
n +

NX

j=Nex+1

wi j(xinh
rp � x(i)

n )⇠( j)
n + wext(xex

rp � x(i)
n )⇠ext(i)

n

◆
. (9)

⌘ controls the decay rate of the synaptic current and xex
rp and xinh

rp are the reversal potentials of excitatory and inhibitory synapses,
respectively. In Eq. 9, the corresponding contribution vanishes, if there is no connection between the neurons i and j (wi j = 0,
where i is the index of the postsynaptic neuron and j is the index of the presynaptic neuron (Fig. 1b)), or if there was no
presynaptic spike event (⇠( j)

n = 0). The decay parameter is chosen as ⌘ = 0.75, the reversal potentials as xex
rp = 0 and xinh

rp =
�1.1, respectively, and the external input weight as wext = 0.6. Excitatory connections have a weight of wi j = 0.6, inhibitory
connections have the tripled weight (wi j = 1.8). By joining the e↵ect by �, I(i)

n can push intrinsically silent neurons into firing
(Fig. 2). In Eq. 9, W is a connectivity-scaling factor. Increasing W enhances the coupling among the neurons without changing
architecture otherwise.

RELEVANCE OF NETWORK MODEL AND RESULTS

In our previous work [47], we exhibited an example contradicting the assumption of the necessary coincidence of the two
notions of criticality. For the counter example, three parameter values from the close vicinity of the avalanche transition point
were investigated, from the avalanche criticality and Lyapunov exponent point of view. Outside this neighborhood, lots of
structural and dynamical changes could, however, occur. Multiple (in fact: a countable infinity of) coincidences of criticality
could emerge, which would qualify our earlier findings. To eliminate this terra incognita, we performed extensive computational
explorations, until a detailed reliable overview of the behavior of the system was obtained. The insight conveyed now, is the
extension from a counter example (a zero measure statement) to showing that such counter-examples will be the generic case
(i.e., non-coincidence has a non-zero measure in the space of systems). Generic refers here to our model class that we consider
to be both su�ciently detailed and yet su�ciently general, regarding the properties of the biological example (see below). To
work out the generic system behavior, we characterized the network state by avalanche size- and life-time distributions, largest
Lyapunov exponent, Kolmogorov-Sinai entropy, firing rate, and synchronization measure.

On top of the topological structure given, the network’s metric activity is also determined by the strength of the individual
connections and the more dynamical aspects of firing. We therefore assess network firing behavior based on ensembles of net-
work realizations that we individually construct on distributions of biologically plausible parameter regions. Neurons providing

model: cortical column

a) Recurrent network with excitatory neurons (red circles), inhibitory neurons (blue circles) and intrinsically firing excitatory neurons (yellow circle)  
representing entrant sensory stimulation.  Each neuron also receives noisy excitatory input, from a Poisson spike train  
b) Weight matrix w of the network, with excitatory connections (red) and inhibitory connections (blue). Grey lines are for the last excitatory neuron 
(index j = 102)	
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known connectivity:

Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains

Ralph Stoop,2 Victor Saase,1 Clemens Wagner,1 Britta Stoop,3 and Ruedi Stoop1,*
1Institute of Neuroinformatics, University and ETH of Zurich, 8057 Zürich, Switzerland

2Institute of Physics, University of Basel, 4056 Basel, Switzerland
3Institute of Forensic Medicine, University of Berne, 3012 Bern, Switzerland

(Received 15 October 2012; published 7 March 2013)

We study to what extent cortical columns with their particular wiring boost neural computation. Upon

a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs

of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely

irrespective of their inner organization, enhances the speed of information transfer and minimizes the total

wiring length required to bind distributed columnar computations towards spatiotemporally coherent

results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in

networks with efficiency properties beyond those by scale-free networks.

DOI: 10.1103/PhysRevLett.110.108105 PACS numbers: 87.19.L!, 05.65.+b, 89.75.Da, 89.75.Fb

Towards the turn of the 19th century, J. P. Müller, E. du
Bois-Reymond, and H. von Helmholtz [1] discovered
that neurons are electrically excitable and this predictably
affects the electrical state of connected neurons. Shortly
after, Golgi and Ramón y Cajal provided their description
of neuronal and cortical architectures, revealing in the
case of the human neocortex striking columnar structures
divided into six layers. Ever since it has remained an open
question to what extent neuronal physics and cortical
architecture could account for the exquisite computational
abilities of the human brain, and how to derive from it
templates of efficient computation.

Recently [2], large-scale functional brain networks have
revealed a scale-free [3,4] link probability decay with
distance, of exponent ! ’ !2, whereas investigations on
cortico-cortical networks have only revealed a small-world
property [3,5]. Here, we complement these more global
descriptions by a study of local computational brain
networks, for which we find empirical indications and
computational arguments for a doubly fractal organization.
In such networks, the probability p of two lattice sites i, j
of distance di;j to be connected is

pi;j ¼ " # di;j!# þ ð1! "Þ # di;j!$;

where " 2 ð0; 1Þ weights between exponents # ’ 2 and
$ & 1. For these networks, we will demonstrate proper-
ties of computational efficacy beyond those of scale-free
networks.

Biological data.—Data collected by Roerig et al. [6]
evidence in our log-log adaption (Fig. 1) that the connec-
tion probability law valid within a (physiological) cortical
column [area (I) in Fig. 1], changes outside into a faster
decay law. Roerig et al. moreover note that ‘‘A small
fraction of inputs originated more than one mm away’’
[6]. These observations suggest a slow power or an
exponential probability of connection law decay within
the columnar scale (for avoiding discussions on a poorly

justified power law (too few data points), and to enable
direct comparison to similar works, e.g., Ref. [7], we will
work with an exponential decay), a fast power-law decay
for the interaction among whole columns (i.e., on inter-
columnar scales), and a slower decay for very long dis-
tances that prevent the probability from going to zero too
quickly. Motivated by an approximate self-similarity over
the microcolumn—column—hypercolumn scales, we will
assume that the exponent associated with the slow decay
will be close to the one that would be estimated from a
power law across the columnar distance. Our results do,
however, not critically depend on the exact values of the
exponents, only their relative ordering is of relevance.
We first take much care to show that, opposite to current
beliefs, inner-columnar wiring has little influence on com-
putational efficacy, so that whole columns can be taken as
fundamental elements for measuring the effects of connec-
tivity on computation and on speed of information trans-
port. We will show that for the interaction among columns,
wiring indeed is pivotal.
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FIG. 1 (color). Ferret striate cortex, adaptation from Ref. [6]:
Log-density of photostimulation—evoked excitatory (a) and
inhibitory (b) synaptic inputs (concentric rings 50 %m apart,
from 19 pooled layer 2=3 neurons). (I): Inner-columnar,
(II): Intercolumnar scale. Vertical lines: Extensions of aligned
physiological columns. Tilted dashed lines: Proposed long dis-
tance decay.
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Ferret striate cortex (adaptation from Röhricht et al.):  
Log-density of photostimulation-evoked excitatory (a) and inhibitory (b) synaptic inputs  
(concentric rings 50 mu-m apart, from 19 pooled layer 2/3 neurons).  
(I): Inner-columnar, (II): Intercolumnar scale. Vertical lines: Extensions of aligned physiological columns.  
Tilted dashed lines: Proposed long distance decay.	

 

Computation within columns.—To show that inner-
columnar wiring has little effect on computation, we use
pattern recognition tasks by two models of the column,
and measure their computation in terms of the recognition
rate R. Insights into the structure of biological columns
(cf. Ref. [8]) motivate us to use as the network template
for columnar computation a three-dimensional grid of
3! 3! 15 ¼ 135 neuron sites. 135 is a typical number
of neurons in a column of the size indicated in Fig. 1. The
separation into 3! 3! 15 sites reflects the biological fact
that within a column the average neuronal distance is
dominated by a strong horizontal connectivity vs a large
vertical extension. Columnar models containing larger
numbers of neurons (used to corroborate obtained results)
were scaled correspondingly. Through all simulations, the
abundance of inhibitory neurons was kept at 20%. Taking
biological data as the basis, we measure the effect by the
biological wiring for two columnar models of distinct
detailedness [Fig. 2 (I), (II)]. In the simple excitatory-
inhibitory (EI) column model, the biological wiring is
reduced to excitatory (E) and inhibitory (I) neuronal
populations, and connectivity weights C for having a con-
nection between elements within or among these popula-
tions. The typical biological connectivity is reflected by
CðE;EÞ ¼ 0:3, CðE; IÞ ¼ 0:4, CðI; EÞ ¼ 0:2 and CðI; IÞ ¼
0:1 [Fig. 2 (I) (a), right]. The synaptic strengths are
obtained from drawing from a uniform distribution over
[0,1] and then multiplying by strength weights wðE; EÞ ¼
30, wðE; IÞ ¼ %19, wðI; EÞ ¼ 60 and wðI; IÞ ¼ %19. The
connectivity weights C and the strength weights w reflect
what is known about the average connectivity and synaptic
efficacy in biological columnar networks. Various spatial
distributions of the neurons on the grid can be imple-
mented, if the probability for a connection from neuron j
to neuron i on the grid is chosen according to pconði;jÞ¼
Cði;jÞexpð%d2i;j=!

2Þ, where di;j¼jx̂i%x̂jj is the Euclidean

distance between the ith and the jth neurons’ position on
the grid [Fig. 2 (I), (a), (b), left]. ! controls both the
number and the typical length of the connections, varying
from unconnectedness (! ¼ 0) over local next-neighbor
connectivity (! ¼ 1) to global connectivity (! ¼ 1).
This model is compared to a control network with the
same !, but a uniformly set C (for establishing an equiva-
lent amount of neural activity, C& 0:37, Fig. 2 (I) (b).
In the LEI network, additionally the biological layering is
taken into account. This is done by implementing three
layers f2=3; 4; 5=6g, each of them containing an excitatory
and an inhibitory population. The often used aggregation
of layers 2=3 and of layers 5=6 originates in the difficulty
to discern in physiological studies the precise layer mem-
bership of neurons. The recurrent connections within the
individual layers follow the connection probabilities and
strengths of Ref. [7]; as in the biological example input
mostly feeds into layer 4. Layer 2=3 is the hidden layer, the
output neurons are confined to layer 5=6 [Fig. 2 (II) (a)].
The biological example is compared to networks obtained
by replacing at each synapse with probability p 2 ½0; 1(
the pre- and postsynaptic neurons by neurons chosen from
the pooled neuronal ensembles of the same kind [excita-
tory or inhibitory, Fig. 2 (II) (b)]. This rewiring procedure
retains the overall connectivity and weight distribution
between the excitatory and inhibitory populations, but
gradually removes the three-layered structure.
Reservoir network pattern recognition.—If we want to

measure for a given columnar realization the recognition
rate R, we must be careful to not change its wiring by
the learning process. This is avoided by using reservoir
(or liquid state) neural networks (LSN), a paradigm that is
successfully used, e.g., in robot motion planning [9]. In
these networks, learning is confined to so-called read-out
neurons accessing the network’s periphery only. This allows
us to assess the pure effect of the inner-columnar wiring on
computation. We give a brief outline only, for details see our
SupplementalMaterial Sec. (1a) [10]. LSN associates k pairs
fuðtÞi; yðtÞigi2f1;...;kg of input/output sequences of individual
sequence length Ti (so that t 2 f1; . . . ; Tig; input vectors
u have dimensionality Nu, output vectors v have dimen-
sionality Ny). An input sequence uðtÞi stimulates directly,
via aweightmatrixWin, a reservoir ofNx neurons. Reservoir
neurons are connected by synapses. Synaptic output is
relayed according to the connectivity matrixW implement-
ing the wiring by means of a positive weight for excitatory, a
negative weight for inhibitory and a zero weight for missing
connections. Let xðtÞi denote the generated reservoir state
vector, let T ¼ P

Ti denote the total time spanned by the
input patterns, letX denote theNx ! T-matrix of states, and
let Y denote the Ny ! T matrix of the associated patterns.
The desired relation WoutxðtÞi ’ ydðtÞi leads directly to the
least-squares optimized readout matrix

W out ’ YXþ;

FIG. 2 (color). (I) (a) EImodel, (b) EI-control network (uniform
synaptic weights w, ! ¼ 2). pcon: probability of a synaptic con-
nection among neurons of distance d forC values as in the text,w:
synaptic strength of the connections. (II) (a) LEI-model, (b) LEI-
control network. Input strengths to populations are color coded.
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- microcircuits irrelevant! 
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known connectivity:

Speed-of-information-transfer SIT: 
 
From top: 	

doubly fractal, fractal, random, n.-n. topology.  
Network sizes: 4096, averages over 100 experiments.  
Right: Connections kmin required for synchronization, and associated TWL. 

dependence of R on I, because for most values of I the
number of input receiving neurons is smaller than input
dimensionality (i.e., we have I! 135< 95). The EI net-
work with biology-motivated wiring thus does not perform
significantly better than the control network. The results
from LEI networks [Fig. 3(b)] corroborate the observa-
tions made for the simpler model: A significant depen-
dence of R on the rewiring probability p is not observed.
These observations are compatible with earlier findings for
LSN [9]. Throughout this section, the displayed results are
averages over at least twenty experiments. Error bars are
suppressed, due to the large number of curves collected in
each of the subfigures. Characteristic examples of the
distributions over which the averages are taken are shown
in the Supplemental Material, Sec. (1b) [10]. All compu-
tations were repeated with models of columns containing
doubled, quadrupled and—occasionally—eight times the
number of the original number of neurons, yielding a full
corroboration of the findings.

Computation by interaction among columns.—Upon
zooming out from the columnar scale I to the inter-
columnar scale II, we wrap up the computation by single
columns and relate it to the computations performed by
other columns. Rulkov [14] demonstrated that any desired
neuronal firing behavior representing columnar response
can be expressed by a suitably chosen discrete map.
Consequently, the natural model to use is that of a coupled
map lattice [15,16] of chaotic maps (obtaining in this
way the response flexibility required by computation
[17]). An illustration of this approach is provided in the
Supplemental Material, Sec. (2a) [10]. A broad range
of network architectures can again be accessed if
the probability p of two lattice sites i, j of distance di;j
to be connected is chosen according to pi;j¼!di;j

#"þ
ð1#!Þdi;j## (Fig. 4). Given ! ¼ 1, the system can be

changed from a globally coupled network (" ¼ 0) into
a nearest-neighbor coupled network (" ! 1). For
0< !< 1, # ¼ 0, " ! 1, the network is coupled to the
nearest neighbor with probability 1 and to all other nodes
with probability (1# !), up to the cutoffM. As a result we
obtain a combined nearest neighbor- and random-coupled
network. For " ¼ 0:5, # ¼ 2:0 (and ! ¼ 0:2), we have a
model of a doubly fractal probability distribution sug-
gested by the biological data [Fig. 1, region (II)]. The
cutoff value M determines, together with the underlying
topology, the average number of connected nodes k. By
means of the connectivity matrix even finer network details
can be implemented. The interaction of the local chaotic
site maps f is modeled by diffusive coupling.

We characterized the computation performed at this
scale by the average speed by which information
propagates through a coupled map network (speed of
information transfer ¼ SIT). Using the framework devel-
oped in Ref. [18], SIT is the result of two independent
contributions: The chaotic instability of the site map

(which leads to an average exponential growth of the
initial infinitesimal perturbation d0 applied at site 0)
and the diffusive coupling (which results in a Gaussian
spreading). The two effects lead at site i to a perturbation
of size j$xiðtÞj ' d0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4%Dt

p
( expð~&t# i2

4DtÞ [18], where
D denotes the diffusion coefficient and ~& is the Lyapunov
exponent of the site map. The velocity of the information
wave front is determined at the borderline of damped and

undamped perturbations, which leads to SIT ¼ 2
ffiffiffiffi
~&

p ffiffiffiffi
D

p
.

Assuming essentially identical local site maps, we
measured SIT in arbitrary units by calculating

ffiffiffiffi
D

p

from the Markov chain mean transition time. Details
of this approach are exhibited in the Supplemental
Material, Sec. (2b) [10]. Upon comparing SIT for doubly
fractal, single fractal, random and nearest-neighbor top-
ologies at an equal average number of connections to a
cell k (Fig. 5, left), we found a consistent enhancement
of SIT by the doubly fractal architecture. The enhance-
ment persists across a wide selection of pairs of expo-
nents as long as the qualitative size of the exponents is
preserved and is independent from the network size
[cf. Supplemental Material Sec. (2c) [10]].
We then conditioned SIT on the minimal number of

connections kmin ensuring that the propagating informa-
tion induces a coherent computational state. Technically,
this translates into the cells’ ability to synchronize in
a generalized sense. An elementary computation shows
that full dynamical synchronization of chaotic sites

emerges if the condition je~&#"'kj<1 holds, where
'k are the nonzero eigenvalues of the graph Laplacian

FIG. 4. Main connectivity classes compared (p: connection
probabilities, d: distance, M: cutoff, see text).

FIG. 5 (color). Left: SIT as a function of cell connections k.
From top: doubly fractal (! ¼ 0:2, " ¼ 0:5, # ¼ 2:0), fractal
(! ¼ 1, " ¼ 0:7), random, n.-n. topology. Network sizes: N ¼
4096, averages over 100 experiments. Right: Connections kmin

required for synchronization, and associated TWL. N ¼ 512, 10
experiments.
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: columnar structures may express a sufficient (but not necessary) facilitating structure  
for a combined SIT/TWL optimization!	
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neuronal cultures:

Speed-of-information-transfer SIT: 
 
From top: 	

doubly fractal, fractal, random, n.-n. topology.  
Network sizes: 4096, averages over 100 experiments.  
Right: Connections kmin required for synchronization, and associated TWL. 

dependence of R on I, because for most values of I the
number of input receiving neurons is smaller than input
dimensionality (i.e., we have I! 135< 95). The EI net-
work with biology-motivated wiring thus does not perform
significantly better than the control network. The results
from LEI networks [Fig. 3(b)] corroborate the observa-
tions made for the simpler model: A significant depen-
dence of R on the rewiring probability p is not observed.
These observations are compatible with earlier findings for
LSN [9]. Throughout this section, the displayed results are
averages over at least twenty experiments. Error bars are
suppressed, due to the large number of curves collected in
each of the subfigures. Characteristic examples of the
distributions over which the averages are taken are shown
in the Supplemental Material, Sec. (1b) [10]. All compu-
tations were repeated with models of columns containing
doubled, quadrupled and—occasionally—eight times the
number of the original number of neurons, yielding a full
corroboration of the findings.

Computation by interaction among columns.—Upon
zooming out from the columnar scale I to the inter-
columnar scale II, we wrap up the computation by single
columns and relate it to the computations performed by
other columns. Rulkov [14] demonstrated that any desired
neuronal firing behavior representing columnar response
can be expressed by a suitably chosen discrete map.
Consequently, the natural model to use is that of a coupled
map lattice [15,16] of chaotic maps (obtaining in this
way the response flexibility required by computation
[17]). An illustration of this approach is provided in the
Supplemental Material, Sec. (2a) [10]. A broad range
of network architectures can again be accessed if
the probability p of two lattice sites i, j of distance di;j
to be connected is chosen according to pi;j¼!di;j

#"þ
ð1#!Þdi;j## (Fig. 4). Given ! ¼ 1, the system can be

changed from a globally coupled network (" ¼ 0) into
a nearest-neighbor coupled network (" ! 1). For
0< !< 1, # ¼ 0, " ! 1, the network is coupled to the
nearest neighbor with probability 1 and to all other nodes
with probability (1# !), up to the cutoffM. As a result we
obtain a combined nearest neighbor- and random-coupled
network. For " ¼ 0:5, # ¼ 2:0 (and ! ¼ 0:2), we have a
model of a doubly fractal probability distribution sug-
gested by the biological data [Fig. 1, region (II)]. The
cutoff value M determines, together with the underlying
topology, the average number of connected nodes k. By
means of the connectivity matrix even finer network details
can be implemented. The interaction of the local chaotic
site maps f is modeled by diffusive coupling.

We characterized the computation performed at this
scale by the average speed by which information
propagates through a coupled map network (speed of
information transfer ¼ SIT). Using the framework devel-
oped in Ref. [18], SIT is the result of two independent
contributions: The chaotic instability of the site map

(which leads to an average exponential growth of the
initial infinitesimal perturbation d0 applied at site 0)
and the diffusive coupling (which results in a Gaussian
spreading). The two effects lead at site i to a perturbation
of size j$xiðtÞj ' d0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4%Dt

p
( expð~&t# i2

4DtÞ [18], where
D denotes the diffusion coefficient and ~& is the Lyapunov
exponent of the site map. The velocity of the information
wave front is determined at the borderline of damped and

undamped perturbations, which leads to SIT ¼ 2
ffiffiffiffi
~&

p ffiffiffiffi
D

p
.

Assuming essentially identical local site maps, we
measured SIT in arbitrary units by calculating

ffiffiffiffi
D

p

from the Markov chain mean transition time. Details
of this approach are exhibited in the Supplemental
Material, Sec. (2b) [10]. Upon comparing SIT for doubly
fractal, single fractal, random and nearest-neighbor top-
ologies at an equal average number of connections to a
cell k (Fig. 5, left), we found a consistent enhancement
of SIT by the doubly fractal architecture. The enhance-
ment persists across a wide selection of pairs of expo-
nents as long as the qualitative size of the exponents is
preserved and is independent from the network size
[cf. Supplemental Material Sec. (2c) [10]].
We then conditioned SIT on the minimal number of

connections kmin ensuring that the propagating informa-
tion induces a coherent computational state. Technically,
this translates into the cells’ ability to synchronize in
a generalized sense. An elementary computation shows
that full dynamical synchronization of chaotic sites

emerges if the condition je~&#"'kj<1 holds, where
'k are the nonzero eigenvalues of the graph Laplacian

FIG. 4. Main connectivity classes compared (p: connection
probabilities, d: distance, M: cutoff, see text).

FIG. 5 (color). Left: SIT as a function of cell connections k.
From top: doubly fractal (! ¼ 0:2, " ¼ 0:5, # ¼ 2:0), fractal
(! ¼ 1, " ¼ 0:7), random, n.-n. topology. Network sizes: N ¼
4096, averages over 100 experiments. Right: Connections kmin

required for synchronization, and associated TWL. N ¼ 512, 10
experiments.
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elements:
!
- network built on a network graph, with Rulkov model neurons as nodes 
- size: 32-256 (centered around cortical column size 128) 
- 1: 4 part composition of inhibitory vs. excitatory neurons 
- connectivity probability of pc = 0.04  
- construction: in-degree 4-5, out-degree variable  
- Rulkov neurons initially below threshold 
- leader neurons, representing incoming information above firing threshold;  

subtly chaotically firing 
- noise input temporally sparse 
- synaptic dynamics (mesoscopic synapses, inhibitory synapses by a factor around 3  

stronger): 
!
!
!!
!
!
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typical behavior upon changing W:
A
B

C

D

E

F

G

Firing behavior for W = 0.14, 0.18, 0.24, 0.34, 0.44, 0.54, 0.9, from top to bottom.  
Rasterplots; vertical axis: neuron number, horizontal axis: time (A-F: 10000, G: 2000 time steps).	
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W=0.12
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Up to avalanche criticality, overall firing activity remains at an almost unchanged level.  
Lifetime-distribution reflects of the presence of a leader neuron.	
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W=0.13

Towards avalanche criticality: At W = 0.13, additional modes become unstable	

!
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W=0.139: Avalanche critical point
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∆ t = 41

At avalanche criticality (W = 0.139), an avalanche size power-law decay exponent of α ≈ 2.45 is obtained, 	

using Beggs and Plenz's method	
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criticality tests

a)Avalanche size distributions based on time bins of size∆  ̃t =m·⟨IEI⟩, m∈{0.25,0.5,1.0,1.5,2.0},for 
subcritical (left, W = 0.13), critical (middle, W = 0.139), and supercritical states (right, W = 0.15), logarithmic histogram binning.  
b) Mean avalanche size as a function of lifetime, for critical (top) and supercritical (bottom) states.  
The red dashed line: power law relationship ⟨S ⟩(T ) ∝ T γ .  
c) Avalanche shapes of the critical state show a noisy collapse (T ∈ {25, 30, . . . , 50}, from darker to lighter), expressing a high degree 
of self-similarity, but also the particular role of the intrinsically firing neuron neurons.  
d) For the supercritical state, rescaling does not lead to a collapse (T ∈ {25, 30, . . . , 50}).	
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criticality tests

2.0

0 0.2 0.4 0.6 0.8 1
0.0

V(
t /

 T
 )

t / T

N = 64

N = 128

N = 256

Scaling in system size L across the columnar scale, with N denoting the number of neurons in the network.  
Our results for N ∈ {64, 128, 256} collapse.  
Beyond this range, strongly outside of the columnar scale, an appropriate scaling of the connectivity  
(and of the number of nucleation sites) would need to be provided, which is non-biological.	
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Universal scaling function
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W=0.15: Beyond avalanche critical point: 
multiple transformations

After avalanche criticality, we observe a rather abrupt increase in firing activity,  
as could be expected from an order parameter in the vicinity of a critical state.  
The strong increase continues up to W = 0.15;  
at higher values 0.15 < W < 0.6, the increase with W becomes more moderate.	
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W=0.169

First local maximum of the Kolmogorov-Sinai entropy, based on temporally extended firing patterns.  
Although the distributions have a faint power-law appearance, the data is not invariant to binning.	
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W=0.22

Emergence of preferred patterns at W = 0.22, visible in the avalanche distributions.	
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W=0.3
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Increase of the largest exponent again; following exponents are dragged to more positive values.  
The first exponent still leads the rest of the exponents. Beginning of the fully developed network firing phase.	
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W=0.38
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Second local maximum of the Kolmogorov-Sinai entropy, based on a temporally extended firing pattern phase.  
The first Lyapunov exponent has fully merged with the bulk of the remaining positive exponents.  
End of the fully developed network firing phase	

!
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W=0.60

No positive Lyapunov exponents survive at a local maximum of synchronization.  
At the transition point from positive to negative leading Lyapunov exponent, the avalanche distribution is very similar to the one presented. 
Although a small linear slope part is exhibited, the distribution properties rule out avalanche criticality with high confidence.	

!
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overview

synchrony
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rate leader
rate

λ1

0
0.10 W

network

III III IV
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E

G

Different network characterizations compiled (y-axis: arbitrary units).  
Avalanche criticality is characterized as the unique point where synchronization and KS-entropy increase dramatically,  
and where the leader neurons merge with the network.  
 
full red dots: Parameter locations corresponding to the raster plots  
open red dots: Location of the W-parameters of the network states discussed in detail	
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ensemble results
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Data points are results averaged over 10 network realizations; shaded area indicate one standard deviation around the mean.  
Each simulation for every value of W had a different network adjacency matrix and a different sampling of the random parameters.	

mailto:stoopn@ethz.ch


Ruedi Stoop / Institute of Neuroinformatics / ruedi@ini.phys.ethz.ch

ensemble sampling
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Parameters were sampled from normal distributions N(mean, variance): σ = N(0.09, 10−6), η = N(0.75, 10−4),  
wex = wext = N(0.6,0.0025), winh = N(1.8,0.0025), μ = N(0.001,10−8).  
“Leader” neuron’s parameter σ was sampled from N(0.103,10−6). The parameter ψ was sampled from a normal distribution ψ = N(3.6,10−4).  
To implement a larger variation among the intrinsically silent neurons, 20% of the ψ values were replaced by samples from a uniform distribution 
over the interval ψ ∈ (3.5, 3.6). Similar effect could have been achieved by sampling smaller σ values.	
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model variations
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Left to right: size distribution, lifetime distribution, size vs. lifetime, shape collapse, temporal binning test (all results from 5 network realizations). \Delta_t = 43, 41 
and 64 time steps for both, internal only and external only inputs, respectively.Note that for the internally driven case the critical exponents are different compared to 
the other two cases - however, preliminary simulations with N=512 show exponents that are similar to the other cases.
To do: Get a grip on the relationship between network size and critical exponents. Also, I should quantify the spread of the distributions under different temporal 
binning, as well as the quality of the shape collapse.

T = 30…55

T = 25…50

T = 25…50

!
Size distribution, lifetime distribution, size vs. lifetime, shape collapse, temporal binning test (5 realizations)  
(\Delta_t = 43, 41 and 64 time steps). 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 internal only

 external only
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simpler node dynamics: leaky integrate & fire
a)

b)

c)
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a)-f) Raster plots for W = 0.75, 0.85, 0.9, 1.0, 1.15, 1.7 (top to bottom).	

g) Avalanche size distributions. Dashed line: power-law with exponent α = 2.47, from a fit at W = 0.92  
(range of fit = 7 . . . 70; p-value = 0.054).  
Temporal binning with bin size equal to the average inter-event interval; pooled data over 10 network realizations.	
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simpler node dynamics: leaky integrate & fire

- Leaky integrate-and-fire network exhibits a critical point (power-law exponent of α ≈ 2.5) 	

- Transition emerges at a changed value of W because of the different sensitivity to inputs of the maps 	

- Approaching the critical point is accompanied with the emergence of population-sized bursts.  
These bursts are responsible for the persistent hump that develops at the tail of the distributions  
at larger values of W 	

- The network undergoes a structural transformation paradigm that has some similarity to that  
of the Rulkov dynamics albeit differences in the precise nature of these transformations are expected	
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grammatical analysis of MEA spiking data

(Yoonkey Nam Lab, Kaist)

Hippocampi micro-surgically separated from E18 (embryonic day 18) Sprague- Dawley rats (Koatech, 
Republic of Korea); culture put on MEA-chip (59 electrodes)	
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Culture 1 (800 cells/mm2, 30um electrodes, dataset 15.03.2016 MEA0)
Mean activity of the channels over development. Matrix cells correspond to channels on the array, 
color codes for the average spike detection rate over the total recording duration (in Hz).
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grammatical analysis of MEA spiking data

(Yoonkey Nam Lab, Kaist)
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grammatical analysis: 
statistical string characterization (nsymb =64)

!
Walk-through probability: 

P

through

(x) = P
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(x) · P

out
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Walk-through entropy H: 
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surrogate t-3 random walks  
(length-conditioned)

!
t-3: good model 

!
t-3: failure 
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string separation
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Drosophila precopulatory courtship  
language
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- Generally accepted: spoken human languages fall highest into type t-2  	
(with Swiss-German of the highest grammatical complexity, Shieber ) 

- Drosophila’s body language is of no lower grammatical complexity than      
human spoken language
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grammatical analysis of MEA spiking data

nel=2, T=2
nel=2, random
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(a) (b) (c)

Entropy H(th) versus position, evaluated for artificial strings with nel active electrodes and periodicity T:  
a) a single active electrode, ω = {a}∞ (nel = 1, blue dashed line),   
two active electrodes with periodicity of two, ω = {a, b}∞ (nel = 2,  
T = 2, green solid line).

b) Two active electrodes with periodicity 20 (nel = 2, T = 20, ocher dashed line) and 700 (nel  = 2, T = 700, black solid line).  
c) Random walk model with two active electrodes (nel = 2, random firing, red dashed line).
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grammatical analysis of MEA data

 
a) Entropy Hth versus position for experimental data at 22 DIV (thick red line) and 10 surrogate random walks (colored lines).  
b) Resolved time window, from t = 1800 s to 1985  (entropy: blue, l.-h.-s. axis and  raster plot: red, r.-h.-s. axis).  
c) Symbol probabilities for the four regions of b).	

..entirely different from all what we expect from our modeling approaches!  
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conclusion

- demonstrated generic non-occurrence of avalanche and edge of chaos criticality 
- unexpected stable network transformation paradigm in close to biology networks 

(ensemble property) 
- largely preserved also by simpler node dynamics 
- precise nature of the transformations visible in terms of the descriptors showing  

interaction of coupling, synchronization, chaos amplification and reduction 
!
!
- ..we may suspect a generic underlying paradigm .. 
!
!
- close-to-biology modeling is promising:  

in experiments on neural tissue, the strength of neuronal coupling can be manipulated 
across a similar range 
 
 
 
..however: function <-> topology (Soriano)
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