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Overview

• Graphs, Physics & Networks

• Data, Projections & Networks

• Dentistry, Treatments & Networks  

• Big Data, Knowledge Discovery & Networks

• Conclusions
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GRAPHS, PHYSICS & NETWORKS
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GRAPHS

• Leonhard Euler, 1736:  
first paper of graph 
theory 

• Dénes Kőnig, 1936: 
first textbook on graph 
theory
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NETWORKS

Introduction to Distributed Communications Networks, Paul Baran
Memorandum RM-3420-PR August 1964 – RAND corporation
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Complex Networks

• Watts & Strogatz: Small World Networks
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Small World (“a la Watts & Strogatz”)
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Social Network Analysis

• 1930s : Jacob Moreno and Helen Jennings 
introduced basic analytical methods.

• 1954: John Arundel Barnes started using the term 
systematically to denote the patterns of ties 
defining bounded groups (e.g., tribes, families) and 
social categories (e.g., gender, ethnicity)
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Complex Networks

• Watts & Strogatz: Small World Networks
• Barabasi & Albert: Scale Free Networks
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Scale Free Network
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Complex Networks

• Watts & Strogatz: Small World Networks
• Barabasi & Albert: Scale Free Networks

• Links can be real or virtual
– Virtual links can be long range
– Real links are limited
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Complex Networks

• Watts & Strogatz: Small World Networks
• Barabasi & Albert: Scale Free Networks

• Links can be real or virtual
– Virtual links can be long range
– Real links are limited

• Complex Networks : a Statistical Physics approach 
– Ensembles of networks
– Collective behaviour (emergence)
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1972: More Is Different

• Knowing better the 
details does not help

• Interaction creates new 
“categories” loosely 
related to the basic 
components

• From the interaction 
new (simpler, 
collective) entities 
“emerge”

• Universality & Scaling



ISINP  2017

https://sites.google.com/site/antonioscalaphys/

Network metrics: Centralities

Focused on the importance of the node / edge:
• Degree
• Closeness
• Betweeness
• Eigen/Katz/Page Rank
• Percolation
• Accessibility
• Dynamic influence
• Debt Rank
• ….
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Simplifying networks: Communities

• Spin Models
– find communities like magnetic domains

• Flow trapping
– define dynamics and observe stagnation

• Minimum-cut methods
– find communities with minimum inter-linkage

• Hierarchical clustering
– join recursively less and less connected communities

• Girvan–Newman algorithms
– remove links among communities

• Modularity maximization
– maximize target function over communities

 Generally speaking, the “Divide and Conquer” approach
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Community Structure
Fundamental open questions  
even for the most basic models 
of community detection:
• Are there really clusters or 

communities? Most algorithms 
will output some community 
structure; when are these 
meaningful or artefacts?

• Can we always extract the 
communities, fully or 
partially?

• What is a good benchmark to 
measure the performance of 
algorithms, and how good are 
the current algorithms?
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Last fashion: Networks of Networks
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Network Theory: pros & cons

• Descriptions in terms of 
networks are 
intrinsically “systemic”

• Emergent phenomena 
“need” networks 

• “Good” communities 
fight the “dimensional 
curse”

• Networks capture only 
diadic interactions

• “Danger” of networks 
motifs

• “Decision dependent” 
networks: What are the 
nodes? What are the 
links? How do I 
attribute weights?
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1968: General System Theory

• GST introduced in 1930 
by Von Bertalanffy

• System as “a set of 
elements in interrelation 
among themselves and 
the environment”

• Universal principles of 
organization which hold 
for all systems, 
emphasizing holism over 
reductionism, organism 
over mechanism and 
equilfinality
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Family therapy & psychotherapy

Watzlavick‘s “Interactional View” requires a network of communication 
rules that govern a family homeostasis to maintain the status quo. 
Even if the status quo is negative it can still be hard to change.
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DATA, PROJECTIONS & NETWORKS

Improved community 
detection in weighted 
bipartite networks
Stephen J. Beckett 2016
DOI:10.1098/rsos.140536
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Bipartite Graphs

Bipartite graph: 

• G = (U, V, E)  
• U, V nodes
• E edges among U,V

Bipartite graphs arise 
naturally when 
modelling relations 
between two different 
classes of entities

U V

E
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Examples

• Film – Actors
• Papers – Authors
• Nation – Products
• Text – Words
• Birds – Islands
• Plants – Pollinators
• Politician – Votes
• Users – Newsfeeds
• Patients – Sympthoms
• Genes - Individuals
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Projections

V-graphU-graph

U-V bipartite

u1 u2 u3 u4 u5 u6

v1 v2 v3

u1

u2 u3

u4

u5

u6

v1 v2

v3
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Projections

u1 u2 u3 u4

v1 v2

u5 u6

v3

v1 v2
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Co-occurrence matrix
• B = adjacency matrix of bipartite graph G = (U,V,E)

• Buv = 1 if v has feature u , Buv = 0 otherwise

The co-occurrence Cuw counts the number of times two features u,w 
occur together

        Cuw = Sv Buv Bwv                  

• B BT  weighted adjacency matrix of the projection graph on U→
• BT B  weighted adjacency matrix of the projection graph on V→

C = 2
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Null model

• Cuw = numbers of common neighbors of u,w

• n = maximum possible number of links

• du = Cuu = degree of u 

• fu = du / n   fraction of possible links present

• If nodes were chosen at random:         

fuv = Cuw / n   f→ u fv

Puw(C) =  n  (fu fv) C (1-fu fv) n-C C( )
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Other Projections

• Similarity Matrix

Suw = 2 Cuw / ( Cuu + Cww )     

• Correlation matrix  

juv = ( fuv - fu fv ) / su sv

 

su = fu (1-fu )
2
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Methodology

COLLECT
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Methodology

PROJECT
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Methodology

SELECT
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DENTISTRY, TREATMENTS 
& NETWORKS 
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Introduction

• Motivation: Mining knowledge from Medical Records

• Methods: Network Analysis for Case-Features 
dataset

• Case-study: Childhood orthodontics
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The Complex Oro-Facial System

• components

• relations

• interactions

• dynamics
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Dental Classes

1st Class
(normal)

2nd Class
(bad)

3rd Class
(worst)
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Dataset 1

Cases

• 97 subjects (49 males, 
48 females)

• age 8-13 (mean 10.2)
• 28 1st class, 44 2nd 

class, 25 3rd class 
patients 

• Uniform age and 
gender

Features

• 33 clinical, anatomic, 
functional and 
radiographic features

• 16 landmarks on the 
cephalograms

• 17 functional and clinical 
signs or oral habits 

• score from -3 to + 3 = 
standard deviations 
from the mean
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Cephalograms 

Co-Gn  mandibular length 
as distance from 
Co to Gn

Ar-Go  mandibular ramus 
height

NS-GoGn  divergence of the 
mandibular plane 
relative to the 
anterior cranial 
base

NS-Ar  saddle angle

…. ….
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Getting the networks

            Correlations                          Tresholds

“PROJECT & SELECT”



ISINP  2017

https://sites.google.com/site/antonioscalaphys/

Correlation vs Co-occurrence
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Network metrics
Average degree Clustering coefficient Mean shortest path

1st 4.04 0.28 3.43

2nd 6.45 0.36 3.13

3rd 7.09 0.31 2.39

• 2nd and 3rd class features are more connected than those of the 
control patients.

• 3rd class patients shows a much higher connection and 
closeness: this topology allows a high transmission of the bite 
forces and neuromuscular inputs
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Classes’ network structures
• φ > 30% correlation filtering
• 3rd Class strongly connected but devoid of strong, peculiar hubs
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Hubs in 2nd Class

• peculiar hubs as starting point for an orthodontic selective treatment
• hubs do not necessarily correspond to the most evident clinical signs
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Results 1

• Features can be considered in the light of the 
appropriate network specific for that malocclusion

• Represent the system in a visually intuitive way, 
focus on most important features

• Valuable tool for evidence-based diagnosis in 
primary orthodontic care

• Could also be applied to other clinical problems
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Dataset 2

• Lateral cephalograms of  70  dentoskeletal  Class III 
 patients
– 7-13 years of age; mean = 9,5 years
– 40 female, 30 male
– rapid maxillary expansion and facemask therapy

• Patients re-examined at the end of treatment 
– 11-18 years of age;  mean =14,7  

• Control group of cohort of  70 untreated Class III
–  for age and sex 
– 11-18 years of age,  mean = 14,5
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  Before treatment vs After treatment



ISINP  2017

https://sites.google.com/site/antonioscalaphys/

  Before treatment vs After treatment
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       NO treatment vs Treatment
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       NO treatment vs Treatment
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Results 2

• Network analysis  shows  that  the  progression of 
Class III dysmorphose arise from the interplay 
between a number of well-interconnected 
correlative features

• Features are naturally divided in modules, i.e.,  
groups of densely associated components 
connected to each other  with loose links 

• Representative nodes and links can be associated to 
craniofacial dysmorphoses and to the effects of 
expansion/facemask protraction therapy
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Applications to Medical Diagnostics ?

The classification of human diseases builds on 
observed correlations between pathological analysis 
and clinical syndromes (observational skills to define 
the syndromic phenotype)
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Applications to Medical Diagnostics ?

The classification of human diseases builds on 
observed correlations between pathological analysis 
and clinical syndromes (observational skills to define 
the syndromic phenotype)

Problem: Classic diagnostic strategy is naturally 
limited by the lack of sensitivity in identifying 
preclinical disease and by the lack of specificity in 
defining disease unequivocally
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Applications to Medical Diagnostics ?

The classification of human diseases builds on 
observed correlations between pathological analysis 
and clinical syndromes (observational skills to define 
the syndromic phenotype)

Problem: Classic diagnostic strategy is naturally 
limited by the lack of sensitivity in identifying 
preclinical disease and by the lack of specificity in 
defining disease unequivocally

GOAL: infer syndromic phenotypes from clinical data 
via complex networks methods
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BIG DATA, KNOWLEDGE DISCOVERY 
& NETWORKS

BLACK
BOX
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Advertising Complex Networks

• systems cannot be understood in terms of simple atomic 
components

• data mining can find simple relations and reduce the 
dimensionality of a problem

• data-mining enriches data with meta-data (classification)
• complex systems ``resist`` data-mining as they could 

not be easily broken in pieces
• network science looks globally at the relations among 

the components of a system
• complex network analysis reveals new conceptual classes 

emerging due to the the interaction among the data 
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Positive Correlations
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Negative Correlations
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Both Correlations
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Emergent Classes
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Suggestions

• we can extend the reach of computers from 
analysis to assist hypothesis

• new knowledge simply emerges as plausible 
patterns from network-based data-mining

Complex Networks can contribute to 
mine new knowledge



ISINP  2017

https://sites.google.com/site/antonioscalaphys/

CONCLUSIONS

• Complex networks represent a powerful tool for 
implementing a systemic approach (but remember 
the caveats)

• Massive use of “ordinary” medical data could be a 
fast source of knowledge before the network 
physiology revolution is accomplished (and prepare 
the standardization of the medinfo system)

• Given enough data, heterogeneity can be used to 
reverse the “design-perform-collect” pattern of 
scientific experiments

THANKS !!!
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