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Formulation of the problem
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Data: we have oscillatory signals coming from several
weakly coupled self-sustained oscillators

Our goal: to say as much as possible about the systems and
their interaction

Particular problem: to reconstruct directional connectivity

What kind of connectivity do we detect?
- this will be discussed 1n detail later



Formulation of the problem: assumptions

Assumption 1: all units are observed
Assumption 2: the units are self-sustained oscillators

Assumption 3: the interaction between the units 1s not too
strong

Assumption 4: signals are good for estimation of phases



Connectivity of an Oscillator Network

e Data: we have oscillatory signals coming from several
weakly coupled self-sustained oscillators

® Problem: to reconstruct directional connectivity

e What kind of connectivity do we detect?
Structural vs effective vs functional connectivity




Structural connectivity

O ©,

® Real physical connection: resistor, optical fiber...
Biological system: anatomical connection, €.g., via synapses

e Mathematically, e.g., for the 2nd node:
X2 = Ga(x2) + eHa(x2,x1)

‘ coupling function

autonomous dynamics

Remark: “coupling” = “physical connection”



Effective phase connectivity

® Nodes 1 and 3 are not physically connected, but phase

dynamics of node 3 may depend on the state of node 1.

Then, nodes 1, 3 are effectively connected (unidirectionally)

o (Structural connectivity # effective phase connectivityJ




Functional connectivity

® Nodes 1 and 3 are not physically connected, but they may be

correlated or synchronized due to the common drive 2
—> Nodes 1, 3 are functionally connected

® Notice: (1) functional connectivity 1s not directed

(2) functional connectivity 1s only loosly related to
the structural and effective ones



We quantity the

[ effective phase connectivity ]

by reconstructing the model of phase

dynamics from data

Namely, we perform: ® Protophase estimation
® Protophase-to-phase transformation
® Reconstruction of coupling functions

® Analysis of coupling functions



Network of coupled oscillators

Individual oscillator: Xz, = Gy (xk)
- limit cycle, parameterized by phase g

- phase grows linearly with time: ¢ = wjp = const

A network of N coupled oscillators
}.(k — Gk(Xk) 4 EHk(Xl, X2 oo )

If X; enters the equation for X then there 1s a direct

structural connection I — k

If He = ;4 Hrj(Xk, X;) then coupling is pairwise

(We consider only this case)

If there are terms Hpg i (xx, X;, X1) : cross-coupling
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Weak coupling: Phase description

Weak coupling, no synchrony: motion on the /N-tforus 1n the
phase space of the full system

This motion can be parameterized by /N phases:
Sbk:wk_l_CIk(SOleOZv“')v k=1,...,N

New coupling functions gx can be obtained by a perturbative
reduction (Kuramoto 84):

qk(90199027 ) — &q 1)(901790 29 )+€2q](€2)(9017§02,---)—|—---

Pairwise coupling in the full system:
- first-order approximation: pairwise terms like eqk (gok, ©1)

- high-order approximation: terms, depending on many
phases, not only on the phases of directly coupled nodes
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Effective phase connectivity

® Nodes 1 and 3 are not physically connected, but phase
dynamics of node 3 may depend on the state of node 1.

Then, nodes 1, 3 are effectively connected (unidirectionally)

p3 = w3 + €q§1) (2, p3) + E2Q§2) (1, P25 P3)

° [Structural connectivity # effective phase connectivity]

There is no etfective phase connection 3—>1!
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Coupling functions and quantification of interaction

We reconstruct the coupling functions in terms of Fourier

coefficients, using LMS fit:

deor

—— = Wi + qr(P1, P25+ - PN)

dt

Z fl(lkj?ﬂalN €Xp (illc‘ol

l1,...lN

tlapo

INON)

Norm of the coupling function gx quantifies etffect of the rest of

the network on oscillator k

Action of particular oscillator 3 — k

Partial norm ./\/’,i_j = Z

Lie,l; 70
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Numerical problem

® Two coupled oscillators: to reconstruct
the coupling function we need enough Do

data points to cover the square
0 < 1,227

® Three coupled oscillators: we need enough data points to
cover the cube 0 < 1,23 < 27

® NN coupled oscillators: we need enough data points to cover
the hypercube.... It 1s not feasible!

Typically: pairwise analysis. We suggest an analysis by triplets.
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Partial phase dynamics

Pairwise analysis: we fit the function of two phases, 1gnoring all
others: Pr = Wk + qrji(Pjs Pr)

Norm Pr«; = ||grj|| quantifies link k < j

Pairwise analysis yields spurious
Example

O

connection 1 — 3

Triplet analysis yields correct
@ connectivity (Kralemann et al 2011)

What to do for networks with N>3?
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Triplet analysis of networks with N>3

We reconstruct ©; = wj + @jrm(Pjs Py Pm) for all m

From each triplet we

T2 _ (7)
obtain partial norm: 7;<—k(m) _ Z |‘7:lj,lk,0
ljli7#0

We suggest to take Tj«r = min T; 1 (m) as the final

triplet-based measure of the binary effective connectivity
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Triplet analysis of networks with N>3

e Triplet {1,3,5} yields spuriously

0 @ large term 1 — 3, because ¥1, L3

are correlated due to node 2

Triplet {1,2,3} correctly explains
correlation of ¢1, 3 and yields a
small value for the link 1 — 3
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Example: three van der Pol oscillators

Parameters: e = 0.2 = 0.5
Wi = 1 Wo = 1.3247 Wg = 1.75483

Connectivity matrix: o;; = 0 or 1
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Example, N=3, results

N3<—27 ’P3<—2

t

N3<—19 P3<—1

Remark: here N3 o = T3 2
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Random oscillator network, /N=3

o 9\ o 9 -

T — p(l —x;)Tp +wxr =€ E o (x; cos O + &; sin Oy, )
l

Ok : random asymmetric connection matrix of zeros and ones

Fixed number of incoming connections (two)

Frequencies are taken from a uniform distribution between
0.5 and 1.5

®.; are taken from a uniform distribution between 0 and 27

States with high degree of synchrony are excluded
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Random oscillator network, N=5, results

Existing connections in

e = 0.02

, hon-existing connections 1n red

e = 0.05 e =20.1
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Larger networks?
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Conclusions

Invariant reconstruction of phase equations for a network
Characterization of directional couplings via partial norms
Triplet analysis yields directed connectivity

We detect effective phase connectivity, which 1s close but not
equivalent to the structural connectivity
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Software for data analysis can be downloaded from:
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Formulation of the problem

\

The data we measure are like sequences of spikes

26



Formulation of the problem 11

The data we measure are like sequences of spikes

=y We can reliably detect only times of spikes
=gy we reduce the data to point processes

—_
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Assumptions about the network

® Weak interaction: phase description 1s justified

e PRC of a unit 1s the same for all incoming connections
PRCs of different units can differ!

® Coupling 1s bidirectional but generally asymmetric,
Ekm # Emk

L strength of the link from m to &
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A simple model: integrate-and-fire units

e Without interaction phases of all oscillators grow as Pk = Wit

)
27

phases are wrapped into 0, 27 interval fime
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A simple model: integrate-and-fire units

e Without interaction phases of all oscillators grow as @ = wgt

® When phase of the oscillator k attains ¢, = 27,

it issues a spike

Pk T
27 : .

lime
spikes affect all units with incoming connections from unit &
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A simple model: integrate-and-fire units

e Without interaction phases of all oscillators grow as @r = Wkt

® When phase of the oscillator k attains Pr = 27,

it issues a spike

® When unit j receives a spike from unit ., its phase 1s

instantaneously reset according to its PRC Z; (¢p):

pj = Pj + €ikZi(Pr)

P
27

lime
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Assumptions

Weak 1nteraction: phase description 1s justified

PRC of a unit 1s the same for all incoming connections
PRCs of different units can differ!

Coupling 1s bidirectional but generally asymmetric,

Ekm # Emk

Relaxation after pulse stimulation 1s fast

32



Our approach: iterative solution

We choose one oscillator (let it be the first one) and consider
its all incoming connections €1,

For this oscillator, we recover:

- 1ts frequency
- 1its PRC

- strength of all incoming connections
We achieve this 1n several iterative steps

Then we repeat the procedure for all other units
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Our approach: Notations

® Since we choose the first oscillator, we simplify notations by
omitting one index

e For this oscillator, we recover:
- 1ts frequency w
- its PRC Z ()
- strength of all incoming connections €m, M = 2,..., N
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Notations 11

bty ty) it bt
Ty :
Koasoaoodoaidasnaoos > unit 1
Tz?’l)ﬁgz,z)

t 1 :l .... /.} t t  unit 2

i < .......... g 1 i unit N

time
When the spike at T,gz’l) arrives, the phase of the first unit 1s

il il
ot + 7)) = @i
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Phase equation

Phase increase within each inter-spike interval 1s 27

(1)
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Phase equation

Phase increase within each inter-spike interval 1s 27

Network size Number of stimuli from unit ;
inter-spike interval \ \ \
natural frequency =——p (1)

| o

strength of incoming connections

Phase of the first unit when 1t receives the /I-th spike from unit g,
within the inter-spike interval number &
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Our approach: main idea

(1)

® Suppose we know phases and coupling coefficients;
then we represent the PRC as a finite Fourier series;

thus, we obtain M linear equations (1), where M 1s

the number of inter-spike intervals;
for long time series 1t can be solved, e.g., by LMS fit

® Suppose, vice versa, that we know phases and PRC;
then we obtain a linear system to find coupling
coetticients €
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Thus:

Our approach: main idea

® Vi, €; are known mep we find Z,w

® Vp, Z is kKNOWN ey we find €;, w

(1)
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Our approach: iterative solution

Thus: e g, e; are known me=gp we find Z, w

® Yk, Z 1SKkNOWN mmgp we find €;, w

\ First estimate of Z, w

First estimate of @Yk, €;
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Our approach: iterative solution

Thus: e @g,&; are known me=gp we find Z

® 1,7 isknown —) we find €;

> First estimate of Z, w

Second estimate of ¥k, €

First estimate of @Yk, €;
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Our approach: iterative solution

Thus: e @g,&; are known me=gp we find Z

® 1,7 isknown —) we find €;

First estimate of @Yk, €;

First estimate of Z, w

Second estimate of ¥k, €; \
Third estimate of ¢, €; <

Second estimate of Z, w
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First estimate: phases

Initial estimate: proportionally to time go,g':’l) = 271'7',?’” /Ty

27

\\ estimate
true

time T

phase

phase reset e Z ()

Error of the initial estimate is of the order of € Z (¢)
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First estimate: coupling coeftficients

We want to estimate strength of the link from unit m to unit 1

We plot the interval length T3, of the first unit vs the phase when
the first stimulus from unit m arrives within this time interval
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Next estimates: phases

An example: within T}, there are three incoming stimuli at
(z 1) 7.(m D)~ 1 ('n 1)

I st stimulus: go(z ) — wT,y 1)

2nd stimulus: go(m 1) — w,im 1) + €zZ(90(z 1))

3rd stimulus: @y = wri™Y + 6, Z(p) + em Z (™)

At the end of the interval:
Y = wli + 5zZ(90(z 1)) + emZ(go(m 1)) + 5nZ(‘~P(n 1))

Our quantities are not precise === generally 1 # 27

=y We rescale all estimated phases by 27 /1)

a7



Coupling coefficients once again

We want to estimate strength of the link from unit m to unit 1

We plot the interval length T3, of the first unit vs the phase when
the first stimulus from unit m arrives within this time interval
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Coupling coefficients once again

This approach works very good for a
rather long time series

Numerical

| tests demonstrate that iterations converge to the

correct val

ue even for random assignment of 1nitial values €; !

y
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Numerical tests

Model phase response curves

Type I PRC

0.6 |- (a)
‘S 04—
| —
N

02

0 |
0 2 4 6

0.2

Type II PRC

/\ (b)
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Numerical tests: a remark on normalization

Recall the main equation:

e; and Z enter 1t as a product
—) e; and Z can be arbitrary rescaled

For comparison with the true values we choose scaling factor

by minimizing ~

&) _ ()
Z [ez CcE, }

=2
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Numerical tests: a remark on normalization

Recall the main equation:

e; and Z enter 1t as a product
—) e; and Z can be arbitrary rescaled

For comparison with the true values we choose scaling factor

by minimizing ~

(1) _ celr)
Z [ez CE; }

=2

true recovered
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Numerical test I
Network size: N = 20

Natural frequencies: uniformly distributed between 1 and 2

w1 = 1 (most difficult case)

Coupling coefficients: sampled from the positive part of a

Gaussian distribution with zero mean
and std 0.02

e exclude the networks where at least two units synchronize!

Reconstruction: 10 1terations, 10 Fourier harmonics

only 200 inter-spike intervals used

initial values €; = 1, V1
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Iterative solution: results, coupling strength

Type I PRC Type II PRC
X
+
X X x +
002" x X X @ X X XX
W 5k % " L
w* X ﬁ: ﬁ;x
ﬁ 1 # :l)i'([ + a % 1 "
X <ty W X % # # #
0 & o 3 \ H
1 5 10 15 20 1 5 10 15 20
index 1 index 1
true values

first iteration

second 1teration

H X

10th 1teration
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Iterative solution: results, PRC
Type I PRC Type 1I PRC

true PRC

-------- first iteration

— - — = gecond 1teration

10th 1teration
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Iterative solution: results, frequencies

Type I PRC Type II PRC
1.005 + .
1 M- o * o o = ® o o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1teration 1teration

true value



Numerical test 11: statistical analysis
Network size: N = 20

Natural frequencies: uniformly distributed between 1 and 2

w1 = 1 (most difficult case)

Coupling coefficients: sampled from the positive part of a

Gaussian distribution with zero mean
and std 0.02

e exclude the networks where at least two units synchronize!

Reconstruction: 10 1terations, 10 Fourier harmonics

only 200 inter-spike intervals used

initial values €; = 1, V1

We generate and reconstruct 10”5 networks

57



Numerical test 11: statistical analysis

Quality of the reconstruction: we define the corresponding errors

true recovered
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P(Apgrc)

Numerical test 11: results, histograms of errors

Type I PRC Type Il PRC
— |
CFr = Ll
i S R "
_— ] SR +
0.01 0.1 1 0.01 0.1
Appc Aprc

— - — = first 1teration

-------- third 1teration

10th 1teration



APRC

100

10

0.1¢

Numerical test 11: results, impact of data length

Type I PRC Type 11 PRC

p—

RS

23 50 100 200 500 1000 23 50 100 200 500 1000

number of inter-spike intervals used
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Further tests: impact of network size and noise

Network size from N=10 to 500, with number of spikes ~N

Computational time: ~N”*4, in fact, small (minutes on a laptop)

Errors increase linearly with noise intensity
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One step towards realistic modelling:
Morris-Lecar neurons

with synaptic coupling
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Morris-Lecar network: results, coupling strength

(a) X
X 2 2
X
002" % X
W % %
X . \X
X X
X 2
X
0- &

1 5 10 15 20

index 1

0 true value

X after 10 iterations

only 200 inter-spike intervals are used!
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Z(p)

Morris-Lecar network: results, PRC

1.0

0.0

(b)

true PRC
10th 1teration

27T
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Conclusions

Robust reconstruction of the network structure already for
several hundreds of spikes

Works if the network does not synchronize

It the coupling 1s not weak enough: the network reconstruction
remains correct, the PRC 1s amplitude-dependent

Error of the phase estimation increases with the number of
spikes ===> the reconstruction may fail for w;/w > 1

We need some variability in the drive: the reconstruction may
fail for very sparse networks where periodic nodes can be found
(however, noise helps here!)
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Conclusions 11

® Reference: Phys. Rev. E 96, 012209 (2017)

Rok Cestnik

Thank you for your attention!
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