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Critical coupling:

R R ⇠
p
" � "c

"c =
2

⇡g(!̄)

Globally coupled oscillators: Synchronization transition

• Unimodal frequency distribution: ~ 2nd order phase transition 

• Uniform frequency distribution: ~ 1st order phase transition 
(D. Pazó, 2005)

'̇k = !k + "R sin(⇥ � 'k) , k = 1, . . . , N

R = N�1
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Experiments on electronic circuits
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mean field coupling Vc ⇡ "

PN
i=1 Vi

N
, with 0  "  1

 Temirbayev et al., Phys. Rev E  2012, 2013 

72 oscillators



Individual unit
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Wien-bridge oscillator

ü � µ(1 � ↵u2 + �u4)u̇ + ⌦2u = ⌫V̇f + ⌫!Vf

van der Pol-type equation 



Experiments on electronic circuits
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Nonlinear dependence of 
the phase shift on the 

amplitude of the mean field 

red: nonlinear filter,  black: linear filter   



Measurements and data analysis
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• 73 channels (outputs of all oscillators + mean field) 

• Sampling frequency 20 kHz, 5*10^4 points 

• 5 measurements for each value of the coupling strength 

• Overall: approx. 12500 oscillation periods 

• Phase and frequency determination via the Hilbert Transform 

• Time-averaged order parameter 

• Minimal mean field amplitude

"

Amin = min
t
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R =

*
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X
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Results: linear vs nonlinear phase-shifting unit
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Minimal amplitude as indicator of coherence
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coupling "



Numerical example: Josephson junctions array
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Here global coupling has its own dynamics

Wiesenfeld & Swift 1995

Junctions are coupled via  
a common load (LrC-circuit)

12.3 Generalizations 291

measure. Thus, with probability one, perfect phase locking, where all oscillators fire
simultaneously and periodically, starts in the population. These results are valid for
any N ≥ 2. We illustrate a transition from initially random phases to perfect locking
in the Mirollo–Strogatz model in Fig. 12.3.

12.3.4 Coupled Josephson junctions

Here we demonstrate that a series array of identical Josephson junctions can be con-
sidered as a system of globally coupled rotators. The coupling is ensured by a parallel
load, as is shown in Fig. 12.4.

To write down the equations of the system we recall the main properties of
the Josephson junction (see Section 7.4 and [Barone and Paterno 1982; Likharev
1991]). Each junction is characterized by the angle !k ; the superconducting current
is Ic sin!k , and the junction voltage is Vk = !̇h̄/2e. The current through all the
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Figure 12.3. Dynamics of a population of 100 coupled integrate-and-fire oscillators.
The model is described in the text, the values of parameters are S = 2, γ = 1,
ε = 0.2. The firing events of each oscillator are shown with dots. For presentation
we have sorted the array of variables, so that a set of dots appears as a (broken) line.
One can see how the clusters are formed from oscillators with closed phases.

I
J

R

r C L Figure 12.4. A series array
of many Josephson junctions
J , coupled by virtue of a
parallel RLC-load.
Capacitances of the
junctions are neglected, only
the resistance R parallel to a
junction is taken into
account; this corresponds to
a model of a resistively
shunted Josephson junction.

common load

junctions

For weak coupling the model reduces to the Kuramoto model

L
d2Q

dt2
+ r

dQ

dt
+

Q

C
=

~
2e

X

j

d j

dt

ri

~
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d k
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Nonlinear common load
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Josephson junctions, coupled via a LrC-circuit with nonlinear 

inductance (Rosenblum & Pikovsky, Phys. Rev. Lett. 2007)

Magnetic flux     nonlinearly depends on the current � Q̇

identical units

L
d�

dt
+ r

dQ

dt
+

Q

C
=

~
2e

X

j

d j

dt
, � = L0Q̇ + L1Q̇

3



Nonlinearly coupled Josephson junctions: numerics
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 (Rosenblum & Pikovsky, PRL 2007)
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Identical globally coupled oscillators
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• Elements are identical and subject to common force 

• Phase oscillators, one-harmonic coupling

Consider the simplest network:

The paradigmatic Kuramoto-Sakaguchi model

  attractive coupling

  repulsive coupling

|�| < ⇡/2

⇡/2 < � < 3⇡/2

� = ±⇡/2 neutral coupling

'̇k = ! + "R sin(⇥ � 'k + �), with Rei⇥ = 1
N

P
j e

i'j



The Kuramoto-Sakaguchi model
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'̇k = ! + "R sin(⇥ � 'k + �)

synchrony is stable

 splay state is stable

|�| < ⇡/2

⇡/2 < � < 3⇡/2

� = ±⇡/2 marginal stability 
(not interesting)

either full synchrony,  
or full asynchrony (splay state),

R = 1

R = 0

Notice: clusters are not possible, as follows from the Watanabe-
Strogatz theory (except for N-1,1 configuration) 



Stability of the synchronous state
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Synchronous (one-cluster) state is stable, if � = �" cos� < 0

eigenvalue�

"

|�| < ⇡/2

The Kuramoto-Sakaguchi model, identical oscillators:

For this model: stability is proportional to coupling  
==>  tendency to synchrony increases with "



Specific features of the Kuramoto-Sakaguchi model
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1) tendency to synchrony increases with the coupling strength  

2) domains of stable synchrony and asynchrony are 
complementary 

3) only full synchrony or splay state;  no clusters, no chimeras 

These properties are typical, but not general!



General phase models: 
When do we expect complex solutions?
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1) tendency to synchrony is not monotonic and/or 

2) both splay state and synchrony are unstable

The system settles at some intermediate state

We expect: clusters  
                   chimeras  
                   quasiperiodic partially synchronous states 



Quasiperiodic partial synchrony in  
the Kuramoto-Daido model
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1) continuous but not uniform distribution of phases  
                 order parameter 

2) Mean field frequency      oscillators frequency  
                  quasiperiodic dynamics

0 < R < 1

6=

To be distinguished from the case of ensembles with a 

frequency distribution, when some oscillators form a 

synchronous cluster while some are not locked to the mean field



A minimal model
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'̇k = R1 sin(⇥1 � 'k + �1) + aR2 sin(⇥2 � 2'k + �2)

Kuramoto-Daido model with two harmonics, Hansel et al, 1993

1) frequency can be removed by a transformation to a  
co-rotating frame 

2) coupling strength can be removed by rescaling of time 

3) parameter a=0.2 is fixed, parameters         are varied

Generalized order parameters Rmei⇥m = N�1
P

j e
im'j

�1,2



The biharmonic model: stability analysis
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 P. Clusella, A. Politi, M. Rosenblum, New J. Physics 18 (2016) 093037 
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The biharmonic model: stability analysis
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The biharmonic model: stability analysis
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The biharmonic model: stability analysis
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The biharmonic model: stability analysis
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The biharmonic model: numerics
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Partial synchrony
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Heteroclinic cycles as partially synchronous states

27

R
1

'
�

!
t,
⇥

1
�

!
t

HC in biharmonic model: Hansel et al, 1993; Kori and Kuramoto, 2001



The biharmonic model: numerics
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domain, studied numerically
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The biharmonic model: numerics
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domain, studied numerically

2 3 4 5γ2

1.2

1.4

1.6

γ1
⇥ splay states two clusters

* heteroclinic 
cycles

+  synchrony

partial synchrony Initial conditions: perturbed splay state!



The biharmonic model: numerics
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domain, studied numerically

2 3 4 5γ2

1.2

1.4

1.6

γ1
⇥ splay states two clusters

* heteroclinic 
cycles

+  synchrony

partial synchrony we go along this line �2 = ⇡

Different initial conditions!



The biharmonic model: multistability
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Rayleigh oscillators
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ẍk � ⇠(1 � ẋ

2
k)ẋk + xk = "Re

⇥
e
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⇤
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Order parameter



Rayleigh oscillators
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General case: 
When do we expect complex solutions?
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1) tendency to synchrony is not monotonic and/or 

2) both splay state and synchrony are unstable

The system settles at some intermediate state

We expect: clusters  
                   chimeras  
                   quasiperiodic partially synchronous states 



General case: 
When do we expect complex solutions?
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1) tendency to synchrony is not monotonic and/or 

2) both splay state and synchrony are unstable

The system settles at some intermediate state

We expect: clusters  
                   chimeras  
                   quasiperiodic partially synchronous states 



Stability of the synchronous state
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Synchronous (one-cluster) state is stable, if � = �" cos� < 0

eigenvalue�

"

|�| < ⇡/2

The Kuramoto-Sakaguchi model, identical oscillators:

For this model: stability is proportional to coupling  
==>  tendency to synchrony increases with "
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Extended Kuramoto-Sakagichi model (particular case):
'̇k = ! + "R sin(⇥ � 'k + �0 + �1"

2R2)

linear coupling

nonlinear coupling

Partial synchrony and quasiperiodic dynamics after synchrony 
breaking

Kuramoto, � = �" cos�

extended Kuramoto,�

"

� = �" cos(�0 + �1"
2
)

synchrony breaking

Linear vs nonlinear coupling
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ȧk = (1 + i!0)ak � (1 + i)|ak|2ak

A = N�1
X

j

aj

complex mean field:  

Nonlinearly coupled Stuart-Landau oscillators:

linear and nonlinear  
mean field coupling 

A solvable model for Quasiperiodic Partial Synchrony

+("1 + i"2)A � (⌘1 + i⌘2)|A|2A ,



39

ȧk = (1 + i!0)ak � (1 + i)|ak|2ak

A = N�1
X

j

aj

complex mean field:  

Nonlinearly coupled Stuart-Landau oscillators:

linear and nonlinear  
mean field coupling 

The solvable model: phase approximation

+("1 + i"2)A � (⌘1 + i⌘2)|A|2A ,

Phase approximation: nonlinear Kuramoto-Sakagichi model

'̇k = ! + E(R; "1,2, ⌘1,2)R sin[⇥ � 'k + �(R; "1,2, ⌘1,2)]

'̇k = ! + "R sin(⇥ � 'k + �0 + �1"
2R2)

A solvable particular case:



Nonlinear coupling:  another setup
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Stuart-Landau oscillators, coupled via a common nonlinear medium

ȧk = (µ + i!k)ak � |ak|2ak + ei�F

Ḟ = ��F + i⌫F + i⌘|F|2F + "̃A

'̇k = ! + "R sin(⇥ � 'k + �0 + �1"
2R2)

Phase approximation yields same phase model: 
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Stuart-Landau oscillators, coupled via a common nonlinear medium

ȧk = (µ + i!k)ak � |ak|2ak + ei�F

Ḟ = ��F + i⌫F + i⌘|F|2F + "̃A

Parameters:
� = 0.5

⌘ = 103

� = 0.475⇡

Nonlinear coupling:  numerics

!
o
s
c

,⌦
m

f

R

coupling

Good agreement:

• full system 

• phase model 

• theory



Qualitative discussion: order parameter 
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Hence, for  

the system settles between asynchrony and synchrony 

Theory:  

Self-organized partial synchrony

'̇k = ! + "R sin(⇥ � 'k + �0 + �1"
2R2)

Let asynchrony (              )R = 0 is unstable|�0| < ⇡/2

Synchrony (            ) is stable if 

unstable if 

R = 1 �0 + �1"
2 < ⇡/2

�0 + �1"
2 > ⇡/2

" > "crit =
p

(⇡/2 � �0)/�1

" > "crit : �(R, ") = �0 + �1"
2R2 = ⇡/2

R = "crit/"



Qualitative discussion: frequency difference 
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'̇k = ! + "R sin(⇥ � 'k + �0 + �1"
2R2)

In the partially synchronous state R < 1

Watanabe-Strogatz theory: cluster states are not possible

Hence, all phases are different

Hence, instantaneous frequencies

are all different as well

We denote: h�̇i = ⌦ , h⇥̇i = ⌫

oscillator frequency               mean field frequency 

We argue that ⌦ 6= ⌫



Qualitative discussion: frequency difference II
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Suppose the contrary,              ,  and consider the motion in the  
frame, rotating with the mean field  

⌦ = ⌫

Then, depending on their phase, some 
oscillators are faster than mean field, 
and some are slower

There must be points where relative 
velocity is zero             the points should 
cluster

Clusters are not possible, hence oscillators are either always 

faster, or always slower than the mean field, thus ⌦ 6= ⌫

Theory:  

Quasiperiodic dynamics

⌫ = ! + "2+"2
crit

2"
⌦ = ! + "2

crit

"
,



Nonidentical oscillators
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coupling "

Baibolatov et al., Phys. Rev. E (2010)

Theory for uniform frequency distribution



Theory vs experiment
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coupling "

SOQ

coupling "

Baibolatov et al., Phys. Rev. E (2010)

Theory for uniform frequency distribution
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ȧk = (1 + i!0)ak � (1 + i)|ak|2ak

A = N�1
X

j

aj

complex mean field:  

Nonlinearly coupled Stuart-Landau oscillators:

linear and nonlinear  
mean field coupling 

The solvable model: beyond phase approximation

+("1 + i"2)A � (⌘1 + i⌘2)|A|2A ,

Stability of the synchronous state

witha1 = a2 = . . . = aN = rei' = A

r2 =
1 + "1

1 + ⌘1
'̇ = ⌦ = !0 + "2 �

( + ⌘2)(1 + "1)

1 + ⌘1
and
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The solvable model: beyond phase approximation
Stability of the synchronous state

a1 = a2 = . . . = aN = rei' = A

Eigenvalues:
�1,2 = (1 � 2r2) ±

p
(1 � 32)r4 + 4(!0 � ⌦)r2 � (!0 � ⌦)2

A special case:

�1,2 = (1 � 2r2) ±
p

r4 � "2

4 6 8 10
η1

0

1

2

3

ε 2
 = 0, ⌘2 = 0, "1 = 3, "2 � 0



4 6 8 10
η1
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3

ε 2
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Synchrony stable Synchrony unstable

Neutrally stable bunch state, r = 1,⌦ = !0, R =
p
"1/⌘1

Stability diagram

Asynchrony 
always unstable

Partial synchrony



Numerics
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Mean field frequency    , oscillators frequency         ⌦ = h'̇i⌫

Quasiperiodic partial synchrony type I (QPS-I): ⌫ 6= ⌦

Quasiperiodic partial synchrony type II (QPS-II):               ,⌫ = ⌦

quasiperiodicity due to amplitude modulation



Numerics
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"2 = 3
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mean field amplitude

Transition for large

frequency difference

std of instantaneous frequency

std of instantaneous amplitude

(red: field, blue: oscillators)
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Globally coupled Hindmarsh-Rose neurons
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where mean field X = N

�1
NX

j

xj

ẋk = yk � x

3
k + 3x2

k � zk + 5 + "(X � xk)

ẏk = 1 � 5x2
k � yk

żk = 0.006 [4(xk + 1.56) � zk]

multipliers

"

|µ| = e�T |µ
1
,2
|

transversal LE



Globally coupled Hindmarsh-Rose neurons: results II
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" = 0.04

" = 0.13

⇢ = rms(X)/rms(x) , 0  ⇢  1
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" = 0.04

mean fieldoscillator

snapshot

zoomed snapshot

t=0 t=20T

t=40T t=60T t=80T

Different scenario of synchrony breaking (Hopf-like),  
another type of quasiperiodic partial synchrony



Illustrative example of collective synchrony: 
The Millennium Bridge
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Bridge vibrations without synchrony
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Bridge vibrations without synchrony
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An example of  quasiperiodic partial synchrony?
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Conclusions

• Partially synchronous quasiperiodic dynamics appears at the 
border of stability of the synchronous state 

• It appears in phase and full models, also for (weakly) 
inhomogeneous  ensembles  

• Further examples: van Vreeswijk model of coupled leaky 
integrate-and-fire neurons, … 

• At least two non-trivial forms of quasiperiodicity 

• Exact conditions for emergence of these states is not yet clear
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