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Outline

Coupled endogeneous
(self-sustained) oscillators are
described theoretically
as a dynamical system
for the oscillator’s phases

We extract the dynamical equations from the non-invasively
observed bi-variable data
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Theoretical framework: Autonomous oscillator

- amplitude (form) of oscillations is fixed and stable
- phase of oscillations is free

φ̇ = ω0 (Lyapunov exp. 0)

Ȧ = −γ(A− A0) (Lyapunov exp. −γ)

A

φ
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Theoretical framework: Autonomous oscillator

Phase is the variable proportional to the fraction of the period, it
can be always chosen to rotate uniformly
Note: such a phase always exists and can be obtained from any
cyclic variable θ by transformation

φ = ω0

∫ θ

0

[

dθ

dt

]−1

dθ
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Theoretical framework: Phase equations

One autonomous (self-sustained) oscillator

ϕ̇ = ω

Coupled oscillators (pairwise coupling, first approximation)

ϕ̇k = ωk +
∑

j

qjk(ϕj , ϕk)

Term qjk(ϕj , ϕk) characterizes directional coupling j → k .
If additionally frequency difference and coupling are small, one
averages over the period

qjk(ϕj , ϕk) → Qjk(ϕj − ϕk)

In many cases

qjk(ϕj , ϕk) = PRC(ϕk) · Force(ϕj)
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Two coupled oscillators

Two uncoupled self-sustained oscillators:

dϕ1

dt
= ω1

dϕ2

dt
= ω2

Two weakly coupled oscillators:

dϕ1

dt
= ω1 + q21(ϕ1, ϕ2)

dϕ2

dt
= ω2 + q12(ϕ1, ϕ2)

The observed frequencies

Ω1 =

〈

dϕ1

dt

〉

Ω2 =

〈

dϕ2

dt

〉

deviate from the natural ones ω1, ω2

6 / 32



A scalar observable

Typically one observes a scalar quantity
y that is a function of the system’s
state, y = g(x), and records a scalar
oscillatory time series
Y = y(ti )
Using, e.g., the Hilbert transform y → ŷ

one can obtain a two-dimensional
embedding on the plane (y , ŷ)
A protophase can be defined if the
trajectory rotates around some point
(y0, ŷ0) in this (or other) embedding:

θ = arctan

(

ŷ − ŷ0

y − y0

)

(a)

θ
r
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Protophase vs the genuine phase

Because the protophase depends on the observable and the
embedding, its dynamics generally differs from the dynamics of the
genuine phase ϕ:

ϕ̇ = ω θ̇ = f (θ)

ϕ̇1 = ω1 + q21(ϕ1, ϕ2) θ̇1 = f21(θ1, θ2)

ϕ̇2 = ω2 + q12(ϕ1, ϕ2) θ̇2 = f12(θ2, θ1)

Note: protophases provide same average frequencies,
〈

θ̇
〉

= ω

Hence, knowledge of θ suffices if we are only interested in
detecting synchronization of two systems, but we want a more
detailed description of interaction . . .
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Problems we address:

◮ Reconstruction of the genuine phase ϕ obeying ϕ̇ = ω from an
observed protophase θ

◮ Reconstruction of the coupled equations for the genuine
phases
ϕ̇1 = ω1 + q21(ϕ1, ϕ2) ϕ̇2 = ω2 + q12(ϕ1, ϕ2)
from the observed bivariate data θ1,2

◮ Characterization of the coupling through properties of the
coupling functions

◮ For reconstruction of the coupling network structure
ϕ1 ↔ ϕ2 ↔ ϕ3 . . . from the observed multivariate data θk see
the talk by M. Rosenblum
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From protophase toward the phase: one oscillator

Given: a time series Θ(t), 0 ≤ t ≤ T

We look for a transformation θ → ϕ satisfying

dϕ

dθ
= ω0

dt

dθ
(θ) = σ(θ)

Averaging we obtain (σ/2π is the probability density of θ)

σ(θ) = 2π〈δ(Θ(t)− θ)〉 =
2π

T

∫ T

0
δ(Θ(t)− θ) dt.
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Using the Fourier transform of σ

σ(θ) =
∑

n

Sne
inθ Sn =

1

2π

∫ 2π

0
σ(θ)e−inθdθ

we get

Sn =
1

T

∫ T

0
e−inΘ(t)dt =

1

N

N
∑

k=1

e−inΘk

Final result: Transformation θ → ϕ is

ϕ = θ +
∑

n 6=0

Sn

in
(e inθ − 1)
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Example: Phase from the ECG I

We compute protophases Θ
and phases Φ from three differ-
ent channels (different leads)
of the same ECG of a healthy
male.
The Hilbert plane representa-
tions of these channels are:
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Because the usual angle variable is not monotonic, we estimate θ
according to θ(t) = 2π · l(t) (mod L), where l(t) is the length
along the trajectory in the Hilbert plane and L is the length of the
loop
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Example: Phase from the ECG II

The protophases and the
phases obtained according to
the procedure above for all
channels.
The phases Φ1,2,3(t) com-
puted from three different ob-
servables nearly coincide and
exhibit similar slow deviation
from a linear growth, most
likely due to the respiratory
related rhythms.
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Example: Phase from the ECG III

The effect of the
transfromation
Θi → Φi on the
distributions
of Θi (mod 2π)
and Φi (mod 2π)
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Importance of protophase2phase transformation

Helpful for all statistical operations measuring phase
interdependencies

◮ For synchronization index

〈e i(nϕ1−mϕ2)〉

◮ For Kuramoto-Daido order parameters in ensemble

〈e inϕ〉

For protophases these quantities do not vanish for independent
phases
For the genuine phases these quantities do vanish for independent
phases
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Equations reconstruction

Given: bivariate protophase series Θ1(t),Θ2(t), 0 ≤ t ≤ T

First step: transform to the phases Φ1(t),Φ2(t), 0 ≤ t ≤ T

Second step: reconstruct equations

ϕ̇1 = f21(ϕ1, ϕ2)

ϕ̇2 = f12(ϕ2, ϕ1)
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We represent the r.h.s. as Fourier series

ϕ̇1(ϕ1, ϕ2) = f21(ϕ1, ϕ2) =
∑

n,m

Fnme
inϕ1+imϕ2

and find Fnm from the minimum-of-the-error condition

〈(

Φ̇1 −
∑

n,m

Fnme
inϕ1+imϕ2

)2〉

!
= min
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Solution of the reconstruction problem

f21(ϕ1, ϕ2) =
b(1)(ϕ1, ϕ2)

c(ϕ1, ϕ2)
f12(ϕ1, ϕ2) =

b(2)(ϕ1, ϕ2)

c(ϕ1, ϕ2)

where Fourier-coefficients B
(1,2)
n,m , Cn,m are obtained by integrations

of the time series

B(1)
n,m =

1

T

∫ Φ1(T )

0

dΦ1 e
−inΦ1−imΦ2 B(2)

n,m =
1

T

∫ Φ2(T )

0

dΦ2 e
−inΦ1−imΦ2

Cn,m =
1

T

∫ T

0

dt e−inΦ1(t)−imΦ2(t)
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Reconstructed phase equations

dϕ1

dt
= ω̃1 + q̃21(ϕ1, ϕ2)

dϕ2

dt
= ω̃2 + q̃12(ϕ1, ϕ2)

Functions q̃(1,2) are observable-independent, hence they are
mostly suitable for characterizing strength and/or directionality of
coupling
Reconstructed frequencies ω̃1,2 are not exactly natural ones, but
can contain a non-oscillatory part of the coupling
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Recovery of autonomous frequencies

Autonomous frequencies ω1,2 can be determined if we observe the
systems for at least two different values of the coupling strength
ε
Let us re-write the r.h.s of the equation for the 1st system as

ϕ̇1 = ω̃1 + q̃(1)(ϕ1, ϕ2) = ω1 + ε(q
(1)
0 + Q(1)(ϕ1, ϕ2))

Our technique reconstructs the constant term ω̃1 = ω1 + εq
(1)
0

and function q̃1 = εQ(1)(ϕ1, ϕ2)
Suppose we have two measurements for ε = ε′ and ε = ε′′ and

recover ω̃′
1 = ω1 + ε′q

(1)
0 , ω̃′′

1 = ω1 + ε′′q
(1)
0 , q̃′1 = ε′Q(1), and

q̃′′1 = ε′′Q(1). Then ε′

ε′′
=

||q̃′1||
||q̃′′1 ||

provides
ω̃′′

1 −ω1

ω̃′

1−ω1
=

||q̃′1||
||q̃′′1 ||

autonomous frequency ω1
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Experiment with coupled metronomes
(Ralf Mrowka, Charité, Berlin)

Light 

Reflectors

Metronomes

Light Source

Video - Camera

distance approx. 4 m

Dark room
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Experiment with coupled metronomes: raw data
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Experiment with coupled metronomes: protophases
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Experiment with coupled metronomes: genuine
phases
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Experiment with coupled metronomes: recovering
frequencies
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Theoretical framework: Phase Response Curve

Theory suggests that for weak interaction

q1(ϕ1, ϕ2) = Z1(ϕ1)I2(ϕ2) , (1)

where Z1(ϕ1) is the PRC of the first oscillator and I2(ϕ2) is the
forcing with which the oscillator 2 acts on 1, and similarly for
q2 = Z2(ϕ2)I1(ϕ1).
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Phase response curve from non-invasive observation
of heart beats and respiration

[Kralemann, Fühwirth, Pikovsky, Rosenblum, Kenner, Schaefer,
Moser, Nature Communications, 4:2418 (2013)]
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Result 1: Coupling functions for the human
cardio-respiratory system: comparuing ECG and

pulse
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Result 2: Heart PRC for cardio-respiratory
interaction.
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Result 3: Disentangling the heart rate into the
respiratory-related component and the rest

Reconstructed ECG phase dynamics:

ϕ̇ = ω + Q(ϕ,ϕr ) + ξ(t)

Respiratory-related heart phase dynamics:

Φ̇ = ω + Q(Φ, ϕr )

Respiratory-free heart phase dynamics:

Ψ̇ = ω + ξ(t)
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Result of disentangling the heart rate into the
respiratory-related component and the rest
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Conclusion

◮ A technique to recover genuine phases from noisy oscillatory
observables

◮ This preprocessing is a necessary step prior to statistical
analysis of phases (e.g. prior to synchronization index
calculations)

◮ Reconstruction of observable-independent equations of
phase dynamics provides complete description of
interacting systems within the phase approximation

◮ Autonomous frequencies from observations of coupled systems

◮ Disentangling different components in the phase dynamics

◮ MATLAB package available:
http://www.agnld.uni-potsdam.de/∼mros/damoco2.html
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