Arkady Pikovsky and Michael Rosenblum

Institut for Physics and Astronomy, University of Potsdam, Germany

ISINP, July 2017

1/32



Outline

Coupled endogeneous
(self-sustained) oscillators are
described theoretically

as a dynamical system

for the oscillator's phases

We extract the dynamical equations from the
observed bi-variable data

non-invasively

N



Theoretical framework: Autonomous oscillator

- amplitude (form) of oscillations is fixed and st A
- phase of oscillations is free /\ \@
b= wy (Lyapunov exp. 0)

A= —v(A = Ap) (Lyapunov exp. —7)



Theoretical framework: Autonomous oscillator

Phase is the variable proportional to the fraction of the period, it
can be always chosen to rotate uniformly

Note: such a phase always exists and can be obtained from any
cyclic variable # by transformation

O 7do1 !
o= [ ]
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Theoretical framework: Phase equations

One autonomous (self-sustained) oscillator

p=w

Coupled oscillators (pairwise coupling, first approximation)

ok =wi+ > k() o)
J

Term qjk (), k) characterizes directional coupling j — k.
If additionally frequency difference and coupling are small, one
averages over the period

ajk(®j, px) = Qi(pj — k)

In many cases

qik(j> k) = PRC(pk) - Force(yp;)
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Two coupled oscillators

Two uncoupled self-sustained oscillators:

der _ de2

= W = W
dt ! dt 2

Two weakly coupled oscillators:

doy
W + g21(1, ¥2)
dpa

il + q12(1, ¥2)

The observed frequencies

_[da _ [ de2
w-() = (%)

deviate from the natural ones wy, w»

6
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A scalar observable

Typically one observes a scalar quantity
y that is a function of the system’s
state, y = g(x), and records a scalar
oscillatory time series

Y =y(t;)

Using, e.g., the Hilbert transform y — ¢ (@)

one can obtain a two-dimensional ///7
embedding on the plane (y, ) //6

A protophase can be defined if the SN\

trajectory rotates around some point
(Yo, o) in this (or other) embedding:

6 = arctan <y — ya)
Yy =X
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Protophase vs the genuine phase

Because the protophase depends on the observable and the
embedding, its dynamics generally differs from the dynamics of the
genuine phase ¢:

$=w 0 = £(6)
$1 = w1 + (1, ¢2) 01 = H1(61,02)
P2 = w2 + q12(p1, 2) 0o = f12(62,01)

Note: protophases provide same average frequencies, <9> =w

Hence, knowledge of 6 suffices if we are only interested in
detecting synchronization of two systems, but we want a more
detailed description of interaction ...
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Problems we address:

» Reconstruction of the genuine phase ¢ obeying ¢ = w from an
observed protophase 6

» Reconstruction of the coupled equations for the genuine
phases
o1 = w1 + g1, 92) P2 = w2 + qr2(01, ¥2)
from the observed bivariate data 0y »

» Characterization of the coupling through properties of the
coupling functions

» For reconstruction of the coupling network structure
1 > Y2 <> w3... from the observed multivariate data 6y see
the talk by M. Rosenblum



From protophase toward the phase: one oscillator

Given: a time series ©(t), 0 <t < T
We look for a transformation § — ¢ satisfying

Averaging we obtain (o /27 is the probability density of )

T T
o(0) = 21(5(8(t) — 0)) = 27'/0 5(O(t) — ) dt.
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Using the Fourier transform of o

) 1 [27 .
_ inf _ —inf
o(9) = g,, Spe Sp = 27r/0 o(0)e” " db

we get

1 /7 1
— —fn@(t)dt — E —in©y
& T /o © N k=1 :

Final result: Transformation 0 — ¢ is

Sn i
QDZQ‘FZE(GI"Q—]_)
n#0
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Example: Phase from the ECG |

(a 5. b)L"
We compute protophases © o oo
and phases ® from three differ-

-3.2 -1.5

ent channels (different leads) 52 3?1” R 2
of the same ECG of a healthy Oy

male. ST o @

The Hilbert plane representa- id

tions of these channels are: IR CO

Because the usual angle variable is not monotonic, we estimate 6
according to 0(t) = 2w - I(t) (mod L), where /(t) is the length
along the trajectory in the Hilbert plane and L is the length of the
loop



Example: Phase from the ECG II

The protophases and the
phases obtained according to
the procedure above for all
channels.

The phases ®q,3(t) com-
puted from three different ob-
servables nearly coincide and
exhibit similar slow deviation
from a linear growth, most
likely due to the respiratory
related rhythms.
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mum

@1 (mod 271')@2 (mod 271')@3 (mod 271')

The effect of the
transfromation

©; — ©; on the
distributions

of ©; (mod 27) T 20 T 2m0 T 2m
and ®; (mod 27) (mod 27)®, (mod 27)®3 (mod 27)
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Importance of protophase2phase transformation

Helpful for all statistical operations measuring phase
interdependencies

» For synchronization index

<ef(nw1—m<pz)>

» For Kuramoto-Daido order parameters in ensemble
(")

For protophases these quantities do not vanish for independent
phases

For the genuine phases these quantities do vanish for independent
phases
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Given: bivariate protophase series ©1(t),©2(t), 0 <t < T
First step: transform to the phases ®1(t),®2(t), 0 <t < T
Second step: reconstruct equations

@1 = hi(e1, v2)
Y2 = fi2(p2, 1)
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We represent the r.h.s. as Fourier series

P1(¢1, 92) = h1(p1, 92) ZF einertime

and find F,;, from the minimum-of-the-error condition

2
: ; ; o
b1 — E Fpme'ertimez = min

n,m
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Solution of the reconstruction problem

b@ (1, 02)
C(<P17 <P2)

b (o1, 02)

fi , =
Honen) 12(¢p1, ¢2)

h1(p1,2) =

(

where Fourier-coefficients B,,},’,?), Ch,m are obtained by integrations
of the time series

®1(T) ®,(T)
B’(Llr)n _ %/ 1 d¢1 efind)lfimd)z B,(,,2,)n _ %/ 2 dq)z ef,'ncblfim%
0 0

1 7T o -
Cn,m == 7/0 dt e_’" 1(2)—im®2(t)
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Reconstructed phase equations

der . .
il Go1(1, ¥2)
d - -
% =wy + Q12(<P1, <P2)

Functions §(1:2) are observable-independent, hence they are
mostly suitable for characterizing strength and/or directionality of
coupling

Reconstructed frequencies @; » are not exactly natural ones, but
can contain a non-oscillatory part of the coupling
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Recovery of autonomous frequencies

Autonomous frequencies wy > can be determined if we observe the
systems for at least two different values of the coupling strength
€

Let us re-write the r.h.s of the equation for the 1st system as

i . 1

¢1 =01+ G (1, 02) = w1 + €(q(() )+ QW (g1, ¢2))
Our technique reconstructs the constant term &7 = wy + eq(()l)
and function §; = 5Q(1)(<,01,cp2)
Suppose we have two measurements for e = ¢’ and ¢ = ¢” and
recover O] = wy + E’q(()l), & = w1+ 5”q(()1), gy = QM. and

=1 11 (1) e 1G] : & —wy 116111
="QY. Then = 1= rovides — = =
9 e” 4IRS o1 —w1 IEAL

N e

autonomous freq uency wi
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Light Source Dark room

Light

— Reflectors

Metronomes
Video - Camera

distance approx. 4 m
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Experiment with coupled metronomes: protophases

£
@
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Theoretical framework: Phase Response Curve

Theory suggests that for weak interaction

q1(p1, p2) = Z1(p1)h(p2) 5 (1)

where Z1(¢1) is the PRC of the first oscillator and h(p2) is the
forcing with which the oscillator 2 acts on 1, and similarly for

G2 = Z2(p2)h(p1).

26
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Phase response curve from non-invasive observation
of heart beats and respiration

[Kralemann, Fiihwirth, Pikovsky, Rosenblum, Kenner, Schaefer,

Moser, Nature Communications, 4:2418 (2013)]
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Result 1: Coupling functions for the human
cardio-respiratory system: comparuing ECG and
pulse

“Worst” case “Best” case Average




Result 2: Heart PRC for cardio-respiratory
interaction.

0 T g 2n 0 T 2n

Individual PRCs Z (a) and effective forcing | (b) for all ECG-based
coupling functions (grey curves). Blue: the average over all
individual (grey) curves. Red curves are obtained by decomposition
of the averaged coupling function.
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Result 3: Disentangling the heart rate into the
respiratory-related component and the rest

Reconstructed ECG phase dynamics:

Sb =w+ Q(‘Pv (Pr) + g(t)

Respiratory-related heart phase dynamics:

¢ =w-+ Q(q)ﬂor)

Respiratory-free heart phase dynamics:

U =w+¢(t)
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Result of disentangling the heart rate into the
respiratory-related component and the rest

Variances

0.01 0.1 1
Var(HRV)
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o
©

Power spectrum (arb. units)
8&
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RSA-HRV ——
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original HRV ¢1(t) (green), the RSA-HRV component (Qi(t),

red) and the non-RSA-HRV component (1 —

Ql, que)
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Conclusion

v

A technique to recover genuine phases from noisy oscillatory
observables

This preprocessing is a necessary step prior to statistical
analysis of phases (e.g. prior to synchronization index
calculations)

Reconstruction of observable-independent equations of
phase dynamics provides complete description of
interacting systems within the phase approximation

Autonomous frequencies from observations of coupled systems
Disentangling different components in the phase dynamics

MATLAB package available:
http://www.agnld.uni-potsdam.de/~mros/damoco2.html



