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» Synchronous population as an effective oscillator
» Chimera as a pattern formation problem

» Multifrequency oscillator populations and hypernetworks
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Ensembles of globally (all-to-all) couples oscillators

» Physics: arrays of Josephson
junctions, multimode
lasers,spin-torque oscillators,. . .

» Biology and neuroscience: cardiac

pacemaker cells, population of

fireflies, neuronal ensembles,. . . b
» Social behavior: applause in a large

audience, pedestrians on a
bridge,. ..
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Main effect: Synchronization

Mutual coupling adjusts phases of individual systems, which start
to keep pace with each other

Synchronization can be treated as a nonequilibrium

phase transition!
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Kuramoto-Sakaguchi model: coupled phase
oscillators

Phase oscillators with all-to-all pair-wise coupling

N

) 1 )

Pr=wtey Elsm(@j—wwrﬁ)
J:

= wie + eR(t) sin(O(t) — ok + B) = wi + elm(ZePe™'#¥)

System can be written as a mean-field coupling with the mean field
(complex order parameter Z )

. 1 .
7 = Re'® = NZe"Pk
k

Identical oscillators:
» synchronization for attractive coupling ecosff > 0: |Z| =1

» desynchronization for repulsive coupling ecos 8 < 0: |Z| =0
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Closed description of the collective mode

Watanabe and Strogatz (1994), Ott and Antonsen (2008)
For simplicity, we consider the thermodynamic limit N — oo only
Identical oscillators driven by the common complex field H

Gk = w4 Im(He™#x)
Order parameter Z = (e/#) obeys a dynamical equation

dZ 1
= —jwZ+ =(H - H*Z?
gt~ wZ+5( )

In the Kuramoto-Sakaguchi case the driving field is H = e Ze'?,
thus

dZ €, ;
= S(7eB _ o—iB) 712
-~ iwZ + 2(Ze e '"?|Z|°Z)
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dZ e, .
T CaiB _ =Bl 712
= iwZ + 2(e e ""|Z|7)Z

Equation for the “amplitude” R = |Z|:

dR ¢ 3
i EcosB(R—R )
cos 3 > 0: Stable synchrony R — 1

cos f = 0: Neutral (conservative) case

cos 8 < 0: Stable full asynchrony R — 0

7/34



Ensemble with distribution of frequencies as an
effective collective oscillator with damping

Lorentzian distribution of frequencies with width A and mean
frequency w:

dZ €, ; :
— =iwZ - AZ+ (e’ —e7P|Z?)Z
= +5(e” = ez

Classical Kuramoto case: 8 = 0:

dZ

e /wZ+(f—A)Z—f]Z] )Z

Critical coupling . = 2/ separates disordered (|Z| = 0) and
partially synchronized (0 < |Z| < 1) regimes



Conclusion to Ott-Antonsen theory

» Population of coupled oscillators can be fully described by a
complex order parameter

» Dynamics of this order parameter is like that of a complex
amplitude at a Hopf bifurcation

» From the viewpoint of collective dynamics, the population is
like one effective oscillator



Chimera states in setups with symmetric coupling

» Nonlocal coupling in a spatially extended situation
o(x) = w+5|m(H(x)e_’¢(X)) H(x) = e"ﬁ/ dy K(X_y)efcp(y)

» Two coupled populations

sok—w+uNZSIn — i+ B)+ Zsm 7 — i +B8)

j=1

N
1 .
@'Z=w+uN_§lsm( er+B)+(1—p Zsm —or+5)
J:
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Chimera states

Y. Kuramoto and D. Battogtokh observed in 2002 a symmetry
breaking in non-locally coupled oscillators
H(x) = e [ dx’ exp[—|x" — x|] exp[ix(x')]

This regime was called “chimera” by Abrams and Strogatz
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Chimera in two subpopulations

Model by Abrams et al:

N

cpk—w—i—uNz;sm -+ 08)+ Zsm b_ i+ p)
J
w—wﬂLstm 7 —op+8)+ Zsmcp, vP+5)

can be reduced to two coupled collective modes!
|Z2| = 1 and |Z®|(t) < 1 quasiperiodic are observed
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Chimera in experiments |

Tinsley et al: two populations of chemical oscillators

C 2n

h

Time (s)
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Chimera in experiments ||

Erik A. Martens,

MPI fir Dynamik und Selbstorganisation
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Using Ott-Antonsen ansatz to describe chimera

Thermodynamic limit (oscillatory medium)
In terms of phases:

0tp = w +Im <e_i(¢+a)//<e_X_ile"‘i’(;’t)d)?) ;

In terms of local coarse-grained order parameter field
1 x+6

1 i6(5) g5
2% )5 e X

Z(x,t) =

we have ' .
0Z = iwZ + (e7*H — € *H*Z?) /2

H(x, t)= / ke XXl z(% 1) dx
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Physical interpretation of exponential coupling
kernel

Field H can be treated as an extra diffusive mediator field which
transfers coupling:

TOH=Kk2PH-H+Z.
In the limit 7 — 0 this field obeys
D2 H— k*H = —K*Z

and is described by the exponential kernel

H(x, t) = / re %1 7(%, t) dx
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Chimera state as a periodic pattern

efiaH _ eiaH*Z2
2
Uniformly rotating chimera state

Z(x,t) = 2(x)el D, H(x, 1) = h(x)el e

PH-—H=-Z

can be described as a stationary pattern in the system “complex
ODE-+algebraic equation”

. ] . d2
e h* z2 1 2iQz — e “h =0, jh—h:—z
dx
0.02
0.01 o
o 0r <<+
Nonlinear reversible system of -0.01 ==
3 equations - 2-dimensional -0.02 (()a:;s
quasi-Hamiltonian map .
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Simple and complex chimera patterns
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Mostly difficult issue: stability

Essential spectrum: purely real and purely imaginary eigenvalues
Discrete spectrum: responsible for instability

TmA : : : -
0.2 (a) . I N E
0 ﬁ :
0.2 . .
—0.4
0.2] () (d) I
0 - T -
0.2
0.4 : : : : :
2015 01 —0.05 0 —015 —0.1 —0.05 0  ReA
Re), i SV b
0"
0041 & 036 ® o
o ° &' O
0.0215 8 E0.24 1
0-—3————{?\—""2‘)o ——————— E 012 ~
0,02 bt Y Wt

1 207505025 Q

0 . . .
-1 —0.75-0.5-0.25 ©

only simplest chimera patterns appear to be stable
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Unstable patterns result in turbulence

a:/L
0.75

0.5
0.25

01 : AR 1l
0 250 500 750 0 250 500 750 0 250 500 750 t

20/ 34



Conclusions to chimera states

» Population of coupled oscillators can be treated in terms of
collective fields as a nonlinear “macro-oscillator”

» Spatial coupling reduces to a pattern-forming system, chimera
states as non-trivial spatial patterns

» Future work: synchronization waves?
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Hierarchically organized populations of oscillators

We consider populations consisting of M subgroups (of different

" a o) C d
G o

Each subgroup is described by WS-OA equations
= system of coupled equations completely describes the ensemble
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Many populations = many collective modes

dZz. . 1 *
dt“’ = (iwa = 83)Zs + 5(Ha - H:Z?)
General force acting on subgroup a:
M
Ha = nyEapZp + Fext,a(t)
b=1

np: relative subgroup size
E, p: coupling between subgroups a and b
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Multifrequency |: Resonantly interacting ensembles

[M. Komarov and A. P., Phys. Rev. Lett. 110, 134101 (2013)]

w3

Most elementary nontrivial resonance wi 4+ wy = w3
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Hypernetwork of coupled oscillators

On the level of individual oscillators (phase ¢ from wq, phase ¢
from wy, phase 6 from w3 = wy + wi) one has to take into account
triple interactions:

d)kZ-‘-JrrlZm,S'n( — 1 — ¢k + 1)

)

¢k:~--+r22m/5|n( — &1 — Y + o)

)

9k =...4+ F3 Zm7/SIn(¢m + wl — (9[( + 63)
Hypernetwork: triple or multiple interactions
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Set of three OA equations

On the level of effective oscillators describing order parameters,
one has a triplet of Stuart-Landau equations with resonant
coupling terms
21 = Zi(iw1 — 01) + (@1Zh + B3 Zs — ZH(E 2T + 1 2223))
2o = Zo(iwa — 02) + (€220 + 1221 Z3 — Z3(525 + 3 2023))
23 = Z3(iw3 — (53) + (6323 4+ 312> — Z§(6§Z§ + 7;21*22*))
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Regions of synchronizing and desynchronizing effect
from triple coupling

203+ p1+ P

p1— B2
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Bifurcations in dependence on phase constants

Different transitions from full to partial to oscillating synchrony
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Multifrequency Il: Non-resonantly interacting
ensembles

[M. Komarov, A. P., Phys. Rev. E, v. 84, 016210 (2011)]

Frequencies are different — all interactions are non-resonant
Only amplitudes of the order parameters can be involved in the
coupling between subpopulations

General equations are of type

Ri= (= —TmR2)R 4+ (a+ AmR2) (1 - RAR;,  1=1,...,L

where [, and Ay, decsribe the coupling
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(a) = | (b)
Only one ensemble is synchronous — depending on initial conditions
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Sequential synchrony (partial or full) in populations
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Chaotic synchrony cycles

Order parameters demonstrate chaotic oscillations
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Conclusions to multifrequency populations

v

Closed description with macroscopic equations for global
modes

v

Triple interaction — hypernetwork organization

v

Competition for synchrony

v

Heteroclinic cycles and chaotic states
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