Como 29.7.2017

ECG, Heart Rate, and Physiological Coupling Analysis to Diagnose Sleep Disorders

Thomas Penzel

Sleep Medicine Center, Berlin, Germany

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

CHARITE

FRANKENHAUS

Cardiorespiratory Polysomnography

Sleep, respiration, cardiovascular signals, video monitoring

Respiration during sleep

Normal respiration during sleep is regular

Disturbed respiration during sleep with apneas of > 10 sec duration

Mechanisms of obstructive sleep apnea

Collapse of the upper airways during sleep for 10 – 60 seconds up to 500 times per night. Relaxing of muscles.

nCPAP = nasal continuous positive airway pressure through the nose with room air.

Pneumatic pressure opens the upper airways.

Prevalence for sleep disordered breathing

Levy et al. Nature Rev Disease Primers 2015;1

Increased mortality for obstructive sleep apnea

264 Control subjects
377 Snoring subjects
403 Obstructive sleep apnea OSA (mild and moderate)
235 OSA (severe)
372 treated OSA patients with CPAP

Marin et al. Lancet 2005

Home sleep apnea testing with Nox or Somnotouch

<u>Signal parameters</u>: Airflow Mikrophone

Oxygen saturation Pulse rate Body position

opt.: nCPAP pressure opt.: respiratory effort opt.: nasal pressure

Hypoventilation and central sleep apnea

Hypoventilation with obstructive snoring

Central sleep apnea Cheyne Stokes breathing

Mortality heart failure and Sleep apnea

Javaheri et al. AJRCCM 183 (2011)

CVD Phenotypes

<u>Comorbidities in sleep apnea</u>: Stroke, Myocardial infarction Arrhythmias Hypertension, Arteriosclerosis Heart failure

<u>Assessment parameters</u>: ECG, Blood pressure pulse wave properties (PTT, PWA) endothelial function

Sympathetic activity during sleep

Stage 4

V.K. Somers et al. N. Engl J Med. (1993) 328

Sympathetic activity during sleep apnoea

A representative recording of apneic events during sleep in an OSAS patient. Note repetitive increases in integrated nerve activity and shifts in blood pressure in association with apnea (indicated by decrease in oxygen saturation). The time scale is indicated at the top

Hedner et al. 1983

ECG of a control and a patient with sleep apnea

 $^{3:10}$ $^{3:$

heart rate shows characteristic cyclical variations with sleep apnea

Penzel T et al. IEEE Trans. Biomed. Eng. 50: 1143-1151 (2003) Stein PK et al. J. Cardiovasc. Electrophysiol. 14: 467-473 (2003) DeChazal P et al. Physiol. Meas. 25: 967-983 (2004)

Identification of minutes with apnoea

IBI = Interbeat interval in seconds OSA = Obstructive sleep apnea

Penzel et al. Med. Biol. Eng. 40:402-407 (2002)

Heart rate variability beyond spectral analysis

Heart rate variability changes in beat-to-beat sequences – random walk theory:

(a) healthy and (b) patients with heart failure

Applied to sleep stages and sleep apnea.

Peng CK, Goldberger A et al. Chaos 1995; 5: 82-87 Bunde et al. Physical Review Letters 85; 2000

DFA of heart rate during sleep

Detrended fluctuation analysis (DFA) applied to heart rate during sleep

- separated for sleep stages
- for healthy subjects
- different scaling behavior in deep sleep and REM sleep

Bunde et al. Physical Review Letters 85; 2000

DFA in sleep apnea – heart rate and sleep

Detrended fluctuation analysis applied to heart rate during sleep

- again separated for sleep stages
- for patients with sleep apnea
- different scaling behavior in deep sleep and REM sleep

Bunde et al. Physical Review Letters 85; 2000

Long term ECG

Holter ECG records not just heart rate but the full ECG with two or more leads

ECG derived respiration - EDR

DeChazal P, Heneghan C, McNicholas W. Philos Transact A Math Phys Eng Sci 367: 369-389 (2009)

Coupling and synchronization

Phase synchronization

Phase synchronization and age

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Phase synchronization and sleep stage

Synchronization analyzed during sleep stages

Synchronization diagram in 112 healthy sleep recordings. Automated calculation of phase using Hilbert transform and correction methods.

Bartsch et al. Phys. Rev. Letters 98: 054102 (2007)

Cardiorespiratory coupling is lost with apnea

(a) R-R intervals, and (b) Respiration during non-REM sleep, and a period with sleep apnea

Penzel et al. Chaos 17: 15116 (2007)

Cardiorespiratory coordination detection

Riedl et al. Plos One (2014)

Cardiorespiratory coordination during apnea / arousal events

Frames in A and B mark asymmetric structures which indicate unidirectional influences.

Riedl et al. Plos One (2014)

ECG monitoring by cardiac pacemaker

Cardiac pacemakers do analyze respiration and do recognize apneas

Defaye et al. Europace 15 S2: 249 (2013) Pepin et al. Europace 15 S2: 196 (2013)

Pulse wave analysis

- Oxygen saturation
- Cardiac output
- Autonomous function
- Disease of peripheral vascular system
- Sleep related breathing disorders

Derive pulse wave from finger – devices

Parameter:

- Peripheral arterial tone
- Pulse oximetry
- Actigraphy

Schnall RP et al. Sleep 22:939-946 (1999) Lavie P et al. Nature Medicine 6:606 (2000) Penzel et al. Physiol. Meas. 25: 1025-1036 (2004)

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Peripheral arterial tone (PAT) during obstructive apnea

Smartphone applications

Movement analysis Microphone analysis additional single-use sensors

Instructions ◀ Wednesday 03-04 Oct ▶ Awake Recommended placement: Sleep quality 10 days 3 months All Sleep Deep Time 圇 1 Sleep quality Sleep note effect on sleep quality Shortest night Placement test \odot лh \odot illi (b) (a) (c)

Grifantini K. IEEE Pulse, Sept. 2014

FIGURE 1 Sleep Cycle uses the accelerometer in smartphones to detect movement. The app uses these readings to attempt to graph a user's sleep patterns. The screenshots show (a) the recommended placement of the smartphone, (b) the user's sleep statistics, and (c) sleep quality graphs. (Image courtesy of Sleep Cycle.)

Compliance recording and treatment follow up

Conclusions

What we know:

- New methods help to understand physiology
- coupling of respiration and heart rate mirrors regulation
- cardiorespiratory coupling differs in sleep stages
- cardiorespiratory coupling is impaired in sleep apnea

What we don't know:

- cardiovascular risk assessment: (stroke, myocardial infarction, hypertension, arteriosclerosis, heart failure)
- genotype phenotype