

Current and future applications of BCIs

Begonya Otal, PhD g.tec medical engineering Spain

o. thatteres

g.tec medical engineering

recoverix® MOTOR-RECOVERY NEUROTECHNOLOGY www.recoveriX.at

CONSCIOUSNESS ASSESSMENT & COMMUNICATION www.mindBEAGLE.at

g.tec in the world...

company fields

- bio-engineering, medical electronics (bio-electricity)
- developing and offering hard- and software products for biosignal research (single cell activity, EEG, ECoG; muscle cells: ECG, EMG; other tissue: EOG, ...)

company description

- private company
- inter-disciplinary team (biomedical-, telematics engineers, psychologists)
- customers: universities, university hospitals, R&D departments, industry

Measuring brain electrical activity

Electroencephalogram (EEG)

8/16/32 - 64 (128) channels, 1 μ V - 100 μ V, 0 - 40 Hz, low signal-to-noise ratio, moderate spacial resolution, high temporal resolution

Surface electrodes: 8 ...12 mm, mounted with conductive gel/paste/dry

Electro-corticogram (ECoG)

closely spaced multi-electrode grids or strips applied directly to the cortical surface, electrode diameter ~ 4mm, up to 500 μ V, 1 – 100 Hz

high signal-to-noise ratio, high spacial and temporal resolution

highly invasive and limited study opportunities

modified from University of Michigan

Hardware Development

g.\

g.NAUTILUS – 64 channels

Flexible positioning with g.SCARABEO electrodes

BCI definition

"A system for **controlling a device** e.g. computer, wheelchair or a neuroprothesis by human intention which does not depend on the brain's normal output pathways of peripheral nerves and muscles" [Wolpaw et al., **2002**].

- HCI Human Computer Interface
- DBI Direct Brain Interface (University of Michigan)
- TTD Thought Translation Device (University of Tübingen)

Some examples of BCI applications

recoveriX GYM

www.gtec.at

> Stroke can lead to movement impairment.

Physiotherapy can help users perform specific movements while imagining them.

However, there is no objective way to measure this movement imagery.

closed-loop

feedback

Co-funded by the Horizon 2020 programme of the European Union

Motor Imagery

70-79

60-69

50-59

Sum

Imagination of hand movement causes an ERD which is used to classify the side of movement.

The desynchronization occurs in motor and related areas of the brain.

15

25

5 100

Physiological Background

Oscillatory Activity

11-Hz mu-activity at C3: desynchronization during a right hand motor imagery

Motor Imagery & FES

recoveriX GYM

Patient 1: born 1953, right handed, May 12th 2014 stroke, right arm affected

Subacute Training video

Rehabilitation Hospital of Iasi, Romania

Danut Irimia, Rupert Ortner, 2014

9-hole PEG test							
Date: 2014	Left hand	Falls	Right hand	Falls			
24-06	31"	0	1'5''	0			
26-06	32"	0	54"	0			
29-06	32"	0	45"	0			
2-07	31"	0	42"	0			
6-09	31"	0	42"	0			
9-09	29"	0	38"	0			
12-09	29"	0	34"	0			
15-09	29"	0	30"	0			
11-01	29"	0	30"	0			

Motor imagery & FES

Patient 2: born 1974, right handed, May 2010 stroke, left arm affected

Rehabilitation Hospital of Iasi, Romania

Danut Irimia, Rupert Ortner, 2014

9-hole PEG test

Not done, because left hand was paralyzed

ChronicTraining video

Q۰

GUGER TECHNOLOGIES

recoveriX2

recoveriX GYM

BCI driven FES:

Scales for the measured variables

Scales
9 Hole Peg Test
Barthel Index
Fugl-Meyer Assessment
Modified Ashworth Scale
Fahn Tremor Rating Scale
VAS

Validation in Schiedlberg, Austria

Patient S0008						
Age	38 y.o.					
Stroke date	2015					
Therapy starts	2016					
Affected arm	Right					
Phase	Chronic					
# sessions	30					

Scales	Start	Final
Barthel Index	100	100
FMA (wrist)	8	10
Modified Ashworth Scale	1	0
Fahn Tremor Rating Scale	2	2

recoveriX GYM

9HPT -	Final
Left	Right
00:17:85	07:26:58
00:15:29	03:21:71
00:14:38	01:34:14
00:14:42	03:13:18
00:16:49	01:52:52
00:16:12	01:48:67
00:15:18	02:06:75
00:14:80	02:21:96
00:16:60	01:04:24
00:13:95	01:51:96
00:15:23	01:24:73
00:13:28	01:25:15
	01:55:93

MaxAccuracy

ø

Motivation

 Fact: 43% of patients diagnosed as vegetative or unresponsive wakefulness state (UWS) are reclassified as (at least) minimally conscious when investigated by expert teams

Co-funded by the Horizon 2020 programme of the European Union

Principle I - DOC assessment

- auditory evoked potentials
- vibrotactile evoked potentials
 - with 2 tactors VT2
 - with 3 tactors VT3

www.gtec.at

P300 response

Auditory result

8 min experimental time Low versus high tones BCI accuracy EPs with significance

Chr. Guger - 04/06/2014 16:07:33	Au	uditory P300	ec
Patient evolution	Physician Amplifier Bandpass filters Sample rate Stimuli per character Ratio of targets	Mr James Swift GUsbAmp UB-2009.07.01 0.1 30Hz. 256 120 (15 tarqets) 1/8 tarqets	OGIES
pre-surgical expected thalamus removal	Experiment length Used classifier	7 min 18 sec Generic Classifier (20%, 2)	
T T T T NT NT NT NT	The maximum Accuracy is 100% 8 trials, out of 480, where classified as A	5 after 3 Stimuli.	
- 75%			
50%			
3 stimuli	20.0 atim		

Chr. Guger - 13/08/2014 09:01:57

VibroTactile 2CH

Vibrotactile result

2.5 min experimental timeLeft/right vibrotactilestimulationBCI accuracyEPs with significance

Successful assessment

MCS- on day of mindBEAGLE

Tried communication with 8 questions, she only responded yes to: 'Do you want to go swimming?'

Principle II - Communication

Imagination of hand movement causes an ERD which is used to classify the side of movement.

g.te

GUGER TECHNOLOGIES

The desynchronization occurs in motor and related areas of the brain.

ALS/LIS Participants

TABLE 2 | Overview of healthy controls and patients participating in this study.

#	Sex	Age (years)	Diagnosis	Disease duration (month)	Mechanical ventilation	Clinical state	Rec. site		
HEALTHY CONTROLS									
S1	F	42	Healthy	_	-	_	GT		
S2	Μ	43	Healthy	-	_	-	GT		
S3	Μ	38	Healthy	-	-	-	GT		
PATI	ENTS								
P1	F	61	ALS	149	yes	CLIS	PA		
P2	Μ	67	ALS	97	yes	LIS	PA		
P3	F	76	ALS	145	no	LIS	PA		
P4	F	75	ALS	184	yes	CLIS	PA		
P5	F	68	ALS	89	yes	LIS	PA		
P6	Μ	63	ALS	27	yes	LIS	PA		
P7	F	62	ALS	70	yes	CLIS	PA		
P8	Μ	68	ALS	52	yes	LIS	PA		
P9	F	65	ALS	84	no	LIS	PA		
P10	Μ	37	ALS	103	yes	LIS	PA		
P11	М	58	ALSFTD	21	yes	LIS	PA		
P12	F	46	ALS	136	yes	LIS	PA		

"ALSFTD" means "ALS with frontotemporal dementia."

LIS results – Median classification accuracy

Pat.	Sess. #	VT2 [%]	VT3 [%]	VT3 Com	MI [%]	MI Com
P1	1	100	100	9/10	51	-
P2	1	100	70	7/10	73	4/5
P 3	1	100	90	8/10	59	-
P4	1	20	70	7/10	47	-
P5	1	99	100	9/10	83	5/5
P6	1	80	100	9/10	56	-
P7	1	40	40	-	-	-
	2	-	20	-	-	
P 8	1	70	100	8/10	49	-
P 9	1	40	10	-	-	-
P10	1	100	50	-	54	-
	2	-	90	8/10	-	-
P11	1	70	20	-	52	-
	2	-	20	-	-	-
P12	1	100	60	-	42	-
	2	-	70	7/10	74	5/5
Average		76,6	63,1	8/10	58,2	4,7

LIS results

FIGURE 3 | EPs and accuracies for VT2, VT3, and MI runs of LIS patient 5. The patient achieved an average accuracy of 83% for MI, 100% for VT2, and 100% for VT3. Communication was possible with the MI and VT3 paradigms. In the bottom figure, the vertical red line indicates when the cue is presented to the subject, while the horizontal red line represents 50% accuracy (corresponding to chance performance).

g. tec

Christoph Guger, Rossella Spataro, Brendan Z. Allison, Alexander Heilinger, Rupert Ortner, Woosang Cho, Vincenzo La Bella (2017) Locked-in patients: Assessment and communication with vibro-tactile and motor imagery brain-computer interface tools. Frontiers in Neuroprosthetics.

University of Palermo, Vincenzo La Bella, Rossella Spataro

and communicate Video NO Video YES

General video

MINIMAL CONSCIOUSNESS STATE: A P300 AND MOTOR IMAGERY BRAIN-COMPUTER INTERFACE FOR ASSESMENT & COMMUNICATION

Begonya Otal g.tec medical engineering Spain SL, Barcelona, Spain (otal@gtec.at)

Frederic Pellas, François Feuvrier Centre Hospitalier Universitaire de Nimes, France (frederic.pellas@chu-nimes.fr)

Ren Xu, Woosang Cho, Brendan Z. Allison, Christoph Guger Guger Technologies OG, Herbersteinstrasse 60, A-8020 Graz, Austria, (xu, cho, allison, <u>guger@gtec.at</u>)

MCS Participants

- MCS patients participated in this study
 - measurements performed at CHU Nîmes, France (Dr. Pellas)
 - > approved by local ethical committee
 - consent form obtained via the legal representative of the patients

Р	Sex	Age (years)	Diagnosis	Disease Duration (month)	Mechanical ventilation	Clinical State		
1	F	21	TBI	12	No	MCS-		
2	F	56	TBI	50	No	MCS+		
3	M 35 ME		23	No	MCS+			
TBI: Traumatic Brain Injury; ME: Meningoencefalitis; MCS: Minimal Consciousness State.								

Classification accuracies

- Median classification accuracies are shown for
 - > AEP assessment run lasts 8 min (15 targets vs. 105 non-targets)
 - > VT2 / VT3 assessment runs last 2.5 min (4 instructions with 15 targets each)
 - > AEP and VT2 quick test (QT) last 38 seconds
 - > VT3 communication, it takes 38 seconds to answer 1 question
 - > MI lasts roughly 9 min (30 left and 30 right hand trials)

Р	Session #	AEP [%]	QT	VT2 [%]	QT	VT3 [%]	VT3 Com	MI [%]	MI Com
1	1	20	-	70	Yes	10	No	51	-
1	2	-	-	-	-	0	No	-	-
	1	80	Yes	50	No	10	No	53.8	No
	2	-	-	80	Yes	30	No	-	-
2	3	-	-	85	Yes	-	-	-	-
	4	100	Yes	100	Yes	40	No	44	No
	5	-	-	-	-	90	YES	-	-
3	1	40	No	100	Yes	90	No	51.3	No
	2	-	-	-	-	40	No	-	-

Vibro-tactile EPs – P1 and P2

g.

VT3 paradigm - P2/multiple sessions

Discussion

- We showed some preliminary but positive results of a BCI system for assessment and communication in some MCS patients
- We observed **differences among patients and sessions**.
- Fluctuations on the same patient (sessions) may reflect the unstable status of MCS patients → multiple assessments are necessary
- The success of AEP and VT paradigms on MCS patients may indicate the intact auditory or tactile sensory pathway
- Low performance on MI paradigm (ERD/ERS) may be due lack of training or tiredness
- Possible communication via VT3 paradigms show that "MCS (mis)diagnosed" patients may follow instructions

o. Washerman

Thanks!

1

STATISTICS.

the of the state

Collinson of