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The	story	so	far

• The	nature	and	degree	to	which	organs	are	networked	has	
information	about	clinical	status	of	patients.

• Mathematical	analysis	of	physiologic	time	series	can	detect	neonatal	
sepsis	early,	and	can	save	lives.

• While	the	autonomic	nervous	system	is	a	means	for	networking,	it	is	
complicated,	and	resists	easy,	linear	interpretation.

• This	opens	the	door	to	non-linear	approaches	to	analysis.
• We	have	used	entropy	estimation	in	our	neonatal	sepsis	detection	
scheme.



Clausius 1864

• Early	figure	in	thermodynamics
• In	combustion,	all	the	heat	generated	is	not	used	for	work
• He	coined	the	term	ENTROPY	from	“energy”	plus	“tropos”	
(transformation);	the	concept	is	that	energy	is	lost.	

• Overall	S	does	not	decrease	=	2nd law



Boltzmann,	Gibbs	1870s
• Showed the relationship of entropy (S) to the number of states 

of a system is logarithmic:

which	is	a	special	case	of	the	more	general	form:	

𝑆 = 𝑘𝐵 log𝑊

𝑆 = −𝑘𝐵	+𝑝𝑖 log 𝑝𝑖

�

�
when	all	the	states	are	equally	likely.	Here,	pi is	1/W



Shannon	1948









Shannon	1930s
• My	greatest	concern	was	what	to	call	it.	I	thought	of	calling	it	‘information’,	
but	the	word	was	overly	used,	so	I	decided	to	call	it	‘uncertainty’.	When	I	
discussed	it	with	John	von	Neumann,	he	had	a	better	idea.	Von	Neumann	
told	me,	‘You	should	call	it	entropy,	for	two	reasons:	In	the	first	place	your	
uncertainty	function	has	been	used	in	statistical	mechanics	under	that	
name,	so	it	already	has	a	name.	In	the	second	place,	and	more	important,	
nobody	knows	what	entropy	really	is,	so	in	a	debate	you	will	always	have	
the	advantage.

• M.	Tribus,	E.C.	McIrvine,	"Energy	and	information", Scientific	American,	224	
(September	1971)

• Shannon	named	it	H after	Boltzmann’s	H-theorem



An	intuitive	feeling	for	–p(xi) log	p(xi)
• We	wish	to	have	a	measure	of	the	surprise	that	we	feel	when	we	see	
the	next	point	in	a	time	series,	xi

• One	way	is	to	measure	surprise	as	the	inverse	of	the	probability	p(xi)
or	1/ p(xi).		Low	probability	points	generate	big	surprise.

• But	suppose	we	want	to	think	about	the	surprise	of	the	next	2	points	
– multiplying	the	2	probabilities	seems	extreme.		Rather,	it	seems	we	
should	be	adding	them.

• Thus	let’s	use	the	log	p(xi),	or,	in	this	case,	- log	p(xi) for	the	inverse
• We	can	then	estimate	the	surprise	of	the	entire	time	series	as	the	
sum	of	all	the	– log	p(xi).

• And	to	estimate	the	average,	we	can	take	the	expectation,	or	

𝐻 𝑋 = −𝔼[log 𝑝(𝑥5)] = 	−+𝑝 𝑥𝑖 	log 𝑝(𝑥5)
8
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Kolmogorov	and	Sinai	1958	and	1959

• Employed	Shannon’s	entropy	as	an	invariant	measure	of	an	ergodic	
dynamical system	– a	new	concept	was	that	new	values	of	an	
dynamical	process	could	be	estimated	with	certainty	that	was	
characteristic	of	the	system	itself

• Thus	the	entropy	of	K	and	S	is:



Kolmogorov	and	Sinai	1958	and	1959

• The	intuitive	interpretation	is	that	each	new	state	in	the	evolving	
dynamical	system	can	be	expected	with	greater	or	lesser	uncertainty	
if	one	knows	the	preceding	states

• This	degree	of	uncertainty	is	a	invariant	measure	or	characteristic	of	
the	system

• The	concept	is	very	naturally	applied	to	time	series	data,	but	the	
limits	make	it	impractical	in	its	full	form

• Next		and	most	relevant	steps	were	to	cast	the	idea	into	
approximations	that	could	be	used	in	experimental	data,	but	first	a	
word	about	estimating	fractional	dimensions



Renyi 1970

𝐻 𝑋 =	−
1

1 − 𝑞 log+𝑝𝑞 𝑥𝑖
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Gave	a	general	form	for	a	family	of	entropies	of	order	q,	
where	Shannon	entropy	is	the	case	for	q	approaching	1.
Note	that	the	log	is	now	outside	the	S.



Takens 1981
• Embedding	theorem	allows	reconstruction	of	an	attractor	from	a	time	
series	by	

where	m is	the	embedding	dimension	of	the	attractor.

This	method	opened	the	door	for	non-linear	dynamical	analyses	of	
experimental	time	series	data.
(For	the	practitioner,	there	are	issues	about	the	values	of	the	lag,	
especially	in	over-sampled	data.)



Grassberger and	Procaccia 1983

• Put	together	the	idea	of	KS	entropy	and	Takens embedding	theorem	
to	develop	a	method	for	determining	the	fractional	dimension	of	an	
attractor	reconstructed	from	an	experimental	time	series.

• Two	fundamental	tools	were	the	correlation	sum	and	the	K2	entropy,	
or	KS	entropy,	or	Renyi entropy	of	order	2.



Grassberger and	Procaccia 1983

The	correlation	sum	is	the	fraction	of	pairs	whose	distance	is	
smaller	than	a	tolerance	r

Where	K2 is	a	lower	bound	for	KS	entropy



Eckmann and	Ruelle 1985

Define:

𝜙< 𝑟 = >
?
∑ log 𝐶5< 𝑟�
5

𝐶5< 𝑟 is	the	probability	that	points	in	the	signal		
stay	within	a	ball	for	m points



Pincus 1991



Approximate	entropy

A =	match	of	length	m+1
B =	match	of	length	m

Approximate	Entropy	» Σ -ln	(1+ΣA)	/	(1+ΣB)

For	regular,	repeating	data,	Σ A /	ΣB nears	1	and	
entropy	nears	0.

bars	are	rmsec

green box	is	m
beats
red box	is	m+1	
beats



Pincus 1991

Pincus and	Huang	1992



Pincus 1991:	ApEn is	biased



Problems	with	ApEn

• Bias:	arises	from	allowing	pairs	to	match	themselves	(as	allowed	by	
Eckmann and	Ruelle,	though	explicitly	excluded	by	Grassberger and	
Procaccia)	so	as	to	avoid	log	0/	log	0

• Leads	to	error	of	unknown	magnitude	(larger	for	fewer	matches)	and	
threatens	relative	consistency

• How	to	choose	r?
• How	to	choose	m?



Richman	and	Moorman	2000

• We	wished	to	apply	ApEn to	the	problem	of	neonatal	sepsis	
• We	sought	to	remove	bias	by	removing	the	template-wise	
approach	to	counting



Sample	entropy

A =	match	of	length	m+1
B =	match	of	length	m

Sample	Entropy	=	-ln	Σ A /	ΣB
Approximate	Entropy	» Σ -ln	(1+ΣA)	/	(1+ΣB)

For	regular,	repeating	data,	Σ A /	ΣB nears	1	and	
entropy	nears	0.

bars	are	rmsec

green box	is	m
beats
red box	is	m+1	
beats
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Non-independence	of	templates	leads	to	bias

Templates	are	allowed	to	overlap,	
and	data	points	can	appear	as	part	of	
the	template	or	as	the	m+1st point.

This	is	relieved	if	templates	are	
disjoint.

For	long	time	series,	the	bias	is	small.



Richman	2006



Observed	vs	expected	variances



Hypothesis	testing	using	SampEn

Note:	use	this	as	a	means	of	picking	m
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Cross-entropy
Now	think	about	2	time	
series,	say,	from	different	
organs	that	are	networked	
together,	and	calculate	the	
entropy	using	1	series	for	
the	original	templates	and	
the	other	for	the	possible	
matches.

Richman,	Moorman	2000



Richman,	Moorman	2000



Lake	2011

𝑄𝑆𝐸 = − log
𝐶𝑃
2𝑟 = − log 𝐶𝑃 + log 2𝑟 = 𝑆𝑎𝑚𝑝𝐸𝑛 + log 2𝑟

Note:	use	this	as	a	means	of	adjusting	for	different	values	of	r

Took	a	stochastic	point	of	view,	and	converted	the	
conditional	probability	to	a	density	by	normalizing	for	the	
matching	volume	(2r)m



Required	reading!
Systematically	examines,	among	other	things:

parameter	selection
non-stationarities,	like	spikes
long-range	correlations



UVa group

• Since	2000,	we	have	been	pondering	some	of	this.
• In	particular,	we	have	been	interested	in	why	it	is	that	entropy	falls	
before	neonatal	sepsis,	and	how	to	pick	r and	m

• In	brief:
• Entropy	falls	before	neonatal	sepsis	because	the	data	are	non-stationary	and	
have	spikes,	not	because	of	a	change	in	order	or	regularity	

• Stationarity	of	heart	rate	is,	in	fact,	quite	elusive
• We	pick	r such	that	the	numerator	count	is	sufficient,	and	then	adjust	the	
entropy	estimate	for	the	r that	we	chose

• We	pick	m based	on	autocorrelation,	Richman	suggested	a	more	elegant	way	
based	on	the	difference	between	entropy	estimates
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Lake…Moorman	2002
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Spikes	reduce	sample	entropy

-5

0

5

10

15

20

300

400

500

-3
-2
-1
0
1
2
3
4
5

surrogate with spike

observed data

S.
D

.
S.

D
.

R
R

 in
te

rv
al

 (m
se

c)

S.
D

.

-2
-1
0
1
2
3

-3

isospectral surrogate record

Lake…Moorman	2002



Spikes	reduce	sample	entropy

Where	D =  the height and eN = the number of 
beats in a spike, and 
D2e(1-e) is the variance added by the spikes

Lake…Moorman	2002



A	KS	test	for	heart	rate	stationarity

Cao,	Lake,	Moorman	2003



A	KS	test	for	heart	rate	stationarity

Cao,	Lake,	Moorman	2003



Heart	rate	stationarity	is	an	elusive	matter

Cao,	Lake,	Moorman	2003



How	to	pick	m	 and	r with	brute	force

In	neontatal HR	data,	
we	sought	to	
minimize	the	
standard	error	of	the	
CP	and	SampEn
estimates.
The	heat	map	plots:

Lake…Moorman	2002



How	to	pick	m
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common	cardiac	
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How	to	pick	r
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Since	we	can	use	QSE/COSEn to	adjust	for	whatever	r we	pick,	
we	suggest	picking	a	value	that	allows	enough	matches	of	length	
m+1	so	that	we	can	have	confidence	in	the	CP	statistic

Lake,	Moorman	2011



Costa,	Goldberger,	Chen	2005

Multiscale	entropy	– sample	entropy	meets	detrended
fluctuation	analysis	(DFA)



Lee,	Nemati,	others	2013

and	determines	changes	in	coupling	between	two	time	series

Transfer	entropy	measures	the	reduction	in	uncertainty	
in	yi given	past	xi and	yi compared	to	only	yi.



Other	newer	versions

• …where	MSE	=	multiscale	entropy
• Refined	composite	MSE	(rcMSE)
• MSE	moments	

• Multivariate	MSE	(MMSE)
• Multivariate	refined	composite	MSE	(MrcMSE)
• Multivariate	Generalized	MSE	(MGMSE)
• Multivariate	Generalized	refined	composite	MSE	(MGrcMSE)
• Cross-entropy	versions?			Your	name	here…



Conclusions

• The	concept	of	entropy	of	physiological	time	series	has	a	very	
interesting	and	non-linear	history.

• Entropy	estimates	such	as	sample	entropy	have	been	very	widely	
applied,	sometimes	sensibly.

• Before	interpreting	results,	it	is	important	to	consider	non-entropy	
causes	for	changes	in	the	results	of	entropy	estimates.

• A	low	value	of	approximate	entropy	means	bias,	spikes	or	order
• A	low	value	of	sample	entropy	means	spikes	or	order


