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The story so far

* The nature and degree to which organs are networked has
information about clinical status of patients.

* Mathematical analysis of physiologic time series can detect neonatal
sepsis early, and can save lives.

e While the autonomic nervous system is a means for networking, it is
complicated, and resists easy, linear interpretation.

* This opens the door to non-linear approaches to analysis.

* We have used entropy estimation in our neonatal sepsis detection
scheme.



Clausius 1864

* Early figure in thermodynamics
* In combustion, all the heat generated is not used for work

* He coined the term ENTROPY from “energy” plus “tropos”
(transformation); the concept is that energy is lost.

e Overall S does not decrease = 2" |aw



Boltzmann, Gibbs 1870s

« Showed the relationship of entropy (S) to the number of states
of a system is logarithmic:

S =kBlogW

which is a special case of the more general form:

S =—kB zpi logp;

when all the states are equally likely. Here, p;is 1/W



Shannon 1948

We have represented a discrete information source as a Markoff process. Can we define a quantity which
will measure, in some sense, how much information 1s “produced™ by such a process, or better, at what rate
information 1s produced?

Suppose we have a set of possible events whose probabilities of occurrence are p).p>.....Ppn. These
probabilities are known but that is all we know concerning which event will occur. Can we find a measure
of how much “choice™ 1s involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure,say H(p;.ps..... Dn) . 1t 1s reasonable to require of it the following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = % then H should be a monotonic increasing function of n. With equally
likely events there 1s more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original H should be the weighted sum
of the individual values of H. The meaning of this is illustrated in Fig. 6. At the left we have three



Theorem 2: The only H satisfying the three above assumptions is of the form:
n
H=-KY pilogp;
i-1

where K 1s a positive constant.

Quantities of the form H = ) p;log p; (the constant K merely amounts to a choice of a unit of measure)
play a central role in information theory as measures of information, choice and uncertainty. The form of H
will be recognized as that of entropy as defined in certain formulations of statistical mechanics® where p; is
the probability of a system being in cell 7 of its phase space. H is then, for example, the H in Boltzmann’s
famous H theorem. We shall call H = — ) p;log p; the entropy of the set of probabilities p;.....pp. If x1s2a

chance variable we will write H(x) for its entropy; thus x 1s not an argument of a function but a label for a
number, to differentiate it from H(y) say, the entropy of the chance variable y.



The quantity H has a number of interesting properties which further substantiate it as a reasonable
measure of choice or information.

1. H = 0 if and only if all the p; but one are zero, this one having the value unity. Thus only when we
are certain of the outcome does H vanish. Otherwise H 1s positive.

2. For a given n, H 1s a maximum and equal to logn when all the p; are equal, 1e., ,l, This 1s also
intuitively the most uncertain situation.

3. Suppose there are two events, x and y, in question, with m possibilities for the first and n for the
second. Let p(i. j) be the probability of the joint occurrence of 7 for the first and ; for the second. The
entropy of the joint event is

H(xy) = - Y p(i.j)logp(i. j)
i.j
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Shannon 1930s

* My greatest concern was what to call it. | thought of calling it ‘information’,
but the word was overly used, so | decided to call it ‘uncertainty’. When |
discussed it with John von Neumann, he had a better idea. Von Neumann
told me, ‘You should call it entropy, for two reasons: In the first place your
uncertainty function has been used in statistical mechanics under that
name, so it already has a name. In the second place, and more important,
nobody knows what entropy really is, so in a debate you will always have
the advantage.

* M. Tribus, E.C. Mclrvine, "Energy and information", Scientific American, 224
(September 1971)

e Shannon named it H after Boltzmann’s H-theorem



An intuitive feeling for —p(x.) log p(x;)
* We wish to have a measure of the surprise that we feel when we see
the next point in a time series, x;

* One way is to measure surprise as the inverse of the probability p(x;)
or 1/ p(x;). Low probability points generate big surprise.

* But suppose we want to think about the surprise of the next 2 points
— multiplying the 2 probabilities seems extreme. Rather, it seems we
should be adding them.

* Thus let’s use the log p(x;), or, in this case, - log p(x;) for the inverse

* We can then estimate the surprise of the entire time series as the
sum of all the — log p(x,).

* And to estimate the average, we can take the expectation, or

H(X) = —E[log p(x)] = 2 p(x) logp(x:)



Kolmogorov and Sinai 1958 and 1959

* Employed Shannon’s entropy as an invariant measure of an ergodic
dynamical system — a new concept was that new values of an
dynamical process could be estimated with certainty that was
characteristic of the system itself

* Thus the entropy of Kand S is:

1 | |
Hgg=—1im lim lim — 2 p(ky.....k)log p(ky.,....k,)

50 e—0 n—m NOx "~ 2 |

Hgo=1im lim lim(H,,, - H,).

0—0 e—0 n—x



Kolmogorov and Sinai 1958 and 1959

* The intuitive interpretation is that each new state in the evolving
dynamical system can be expected with greater or lesser uncertainty

if one knows the preceding states

* This degree of uncertainty is a invariant measure or characteristic of
the system

* The concept is very naturally applied to time series data, but the
limits make it impractical in its full form

* Next and most relevant steps were to cast the idea into
approximations that could be used in experimental data, but first a

word about estimating fractional dimensions



Renyi 1970

Gave a general form for a family of entropies of order g,
where Shannon entropy is the case for g approaching 1.
Note that the log is now outside the 2.

1 n
HOO = — 5= log ) p(x)



Takens 1981

* Embedding theorem allows reconstruction of an attractor from a time
series by

X; = Xi—m+1>Xiems2, ... X;) € R”
where m is the embedding dimension of the attractor.

This method opened the door for non-linear dynamical analyses of
experimental time series data.

(For the practitioner, there are issues about the values of the lag,
especially in over-sampled data.)



Grassberger and Procaccia 1983

* Put together the idea of KS entropy and Takens embedding theorem
to develop a method for determining the fractional dimension of an
attractor reconstructed from an experimental time series.

* Two fundamental tools were the correlation sum and the K2 entropy,
or KS entropy, or Renyi entropy of order 2.



Grassberger and Procaccia 1983

The correlation sum is the fraction of pairs whose distance is
smaller than a tolerance r

A 2
CO) = gy =Ty 2 00— = %D

i<j

K,=lim lim lim—In[C™*(r) — C"(r)].

N—oo m—oo r—0

Where K, is a lower bound for KS entropy



Eckmann and Ruelle 1985

Define:

is the probability that points in the signal
stay within a ball for m points

¢ (r)
1
P (1) =~ 3,;log (" (1)
(I)m+1 (’) _ (Dm(r) ~ E?L—IHHIIH[C;}I(’,) / C;-’Hl (’)]

Hgg = lim lim lim[®"(r) — ®"*(r)]

N—o m—oe r—0



Pincus 1991

Ag(m.r,N) = ®"(r) — ®"(r)

T
N—m m

2 lll m+1

N-m;.;; n

Ag(m,r,N) =




Approximate entropy N
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bars are r msec I
green box is m

A = match of length m+1 beats .
B = match of length m red box is m+1
beats

Approximate Entropy ~ 2 -In (1+2ZA) / (1+2B)

For regular, repeating data, 2 A/ 2B nears 1 and
entropy nears 0.



On the basis of calculations that included the above theo-
retical analysis, I drew a preliminary conclusion that, for m
= 2 and N = 1000, choices of r ranging from 0.1 to 0.2 SD of
the u(i) data would produce reasonable statistical validity of
ApEn(m, r, N). For smaller r values, one usually achieves
poor conditional probability estimates in Eq. 8, while for
larger r values, too much detailed system information is lost.
To avoid a significant contribution from noise in an ApEn
calculation, one must choose r larger than most of the noise.

Pincus 1991

Pincus and Huang 1992
C. Parameter Choices

The selection of values of m and r for the ApEn(m,x,N) statistic should depend
on the amount of available data. We generally would like to choose r as small and m

as large as possible. The tradeoff is given by the requirement of statistical validity,
given by a small ApEn standard deviation, for a specified amount of data. In many
applications, we anticipate between 100 and 5000 input data points. Based on
calculations that included theoretical analyses of deterministic and stochastic
processes (Pincus, 1991; Pincus and Keefe, 1992) and clinical applications
(Pincus, Gladstone and Ehrenkranz, 1991; Kaplan et. al., 1991), we have
concluded that for m=2 and N=1000, values of r between 0.1 to 0.25 standard
deviations of the u(i) data produce good statistical validity of ApEn(m,r,N). For
smaller r values, one usually achieves poor conditional probability estimates, while
for larger r values, too much detailed system information is lost.



Pincus 1991: ApEn is biased
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Problems with ApEn

* Bias: arises from allowing pairs to match themselves (as allowed by
Eckmann and Ruelle, though explicitly excluded by Grassberger and
Procaccia) so as to avoid log 0/ log O

 Leads to error of unknown magnitude (larger for fewer matches) and
threatens relative consistency

e How to choose r?
e How to choose m?



Richman and Moorman 2000

* We wished to apply ApEn to the problem of neonatal sepsis

* We sought to remove bias by removing the template-wise
approach to counting

N—m

2 ”nn

N—m

2 ”rm+1

Sg(m,r,N) =In



Sample entropy
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Bias in entropy estimates
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Bias in entropy estimates
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Non-independence of templates leads to bias

Templates are allowed to overlap,

S ] 4 and data points can appear as part of
% .
& 121 the template or as the m+1% point.
O 3 —k
g10- A
= J . This is relieved if templates are
= i A, ,4 . . .
% 4 . disjoint.
(8] . .
10 100

N For long time series, the bias is small.



Richman 2006

Proposition 4.1. The asymptotic variance of SampEn(m, r, n). is given by

a*(m) B 20'2(m |m+1) N ci(m+1)

2

p;n pmpm-H pp2n+l

2
Os(m,r.n) —

and estimated by

A2 A2 1 22 1
L Bm) Pmmt]) | Bmtl)

A2 ~
65(m.r.n) - A2 AL A ~2
pm pmpm-H pm+l

where the individual components are as defined above.



Observed vs expected variances
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Hypothesis testing using SampEn

Proposition 5.1. The test statistic SampEn(m —1,r,n)— SampEn(m,r,n) is
asymptotically normal with approximate variance

0'2('7: — 1) +462(:n) N 0'2(": + 1) _4(02(m — 1| m) y a*(m|m + 1))
p;n—l P;,, p:n-i—l pm—lpm pmpm+l
+262(m—1|m+1).

pm—lpm-H

Under the null hypothesis that there is no significant difference between
SampEn(m — 1, r, n) and SampEn(m, r, n), the statistic is expected to have a mean of
zero.

Note: use this as a means of picking m



Cross-entropy
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cross-SampEn
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Lake 2011

Took a stochastic point of view, and converted the
conditional probability to a density by normalizing for the
matching volume (2r)™

CP
QSE = —log (5) = —log CP + log 2r = SampEn + log 2r

Note: use this as a means of adjusting for different values of r



PHYSICAL REVIEW E 95, 062114 (2017)

Entropy measures, entropy estimators, and their performance in quantifying complex dynamics:
Effects of artifacts, nonstationarity, and long-range correlations

Wanting Xiong,"? Luca Faes,’ and Plamen Ch. Ivanov>#>:*

Required reading!

Systematically examines, among other things:
parameter selection
non-stationarities, like spikes
long-range correlations



UVa group

* Since 2000, we have been pondering some of this.

* In particular, we have been interested in why it is that entropy falls
before neonatal sepsis, and how to pick rand m

* In brief:

* Entropy falls before neonatal sepsis because the data are non-stationary and
have spikes, not because of a change in order or regularity

 Stationarity of heart rate is, in fact, quite elusive

* We pick r such that the numerator count is sufficient, and then adjust the
entropy estimate for the r that we chose

* We pick m based on autocorrelation, Richman suggested a more elegant way
based on the difference between entropy estimates



500
400
300

RR imterval (msec)

00 4 SampEn =0.2 160
: 150
00 - 140
130
500 4
] SampEn=20 120
450 - 110
100
400 - o
350 "
M0 - w
] 0
250 0
200 4 w
0
150 10
1 0
1 3 1 3 1 3 1 3 13 v
0 2000 4000 H000 B00

Beat number

Lake...Moorman 2002



In records with spikes, SampEn is not
detecting deterministic order
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Spikes reduce sample entropy
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Spikes reduce sample entropy

‘r\ A% -—e)
SampEn(m,r,N) = —log (—=) _ o =
\ \'17,, 205

Where A = the height and N = the number of
beats in a spike, and
A’g(1-¢) is the variance added by the spikes

Lake...Moorman 2002
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Frequency

Frequency

A KS test for heart rate stationarity
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Heart rate stationarity is an elusive matter
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How to pick m and r with brute force

In neontatal HR data,
we sought to
minimize the
standard error of the
CP and SampEn
estimates.

The heat map plots:

Ocp Ocp )

CP’ —log(CP)CP

Lake...Moorman 2002
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How to pick m

Autocorrelation coefficient

1.00

0.751

0.50 1
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all other rhythms

Atrial fibrillation (AF), a
common cardiac
arrhythmia, has
uncorrelated heartbeat
intervals, and m =1 is
sensible.

This makes QSE (a related
metric called COSEn, in
fact) an efficient AF
detector in as few as 10

beats. Lake, Moorman 2011



How to pick r

Since we can use QSE/COSEn to adjust for whatever r we pick,
we suggest picking a value that allows enough matches of length
m+1 so that we can have confidence in the CP statistic

S T 1.007  RoC area
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c
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— 0.251
all other rhythms
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10 100
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Lake, Moorman 2011



Costa, Goldberger, Chen 2005

Multiscale entropy — sample entropy meets detrended

fluctuation analysis (DFA)

24

22 L
2.0 L
18 L

14 F
12 L
1.0 -
0.8 -
0.6 L

—O— Healthy
—+— CHF
_ —X— AF
EEEE
zﬁg M X
4 8 12 16 20

Scale factor




Lee, Nemati, others 2013

Transfer entropy measures the reduction in uncertainty
in yi given past x; and y; compared to only y..

/i Vie1, Xi—
Tex(t)= Y plu pioss xie)log 20t
YirYi-1,Xi—z p ()’il}’i— 1 )

and determines changes in coupling between two time series



Other newer versions

e ..where MSE = multiscale entropy

* Refined composite MSE (rcMSE)

* MSE oments

e Multivariate MSE (MMSE)

e Multivariate refined composite MSE (MrcMSE)

e Multivariate Generalized MSE (MGMSE)

e Multivariate Generalized refined composite MSE (MGrcMSE)
* Cross-entropy versions? Your name here...



Conclusions

* The concept of entropy of physiological time series has a very
interesting and non-linear history.

* Entropy estimates such as sample entropy have been very widely
applied, sometimes sensibly.

» Before interpreting results, it is important to consider non-entropy
causes for changes in the results of entropy estimates.

* A low value of approximate entropy means bias, spikes or order
* A low value of sample entropy means spikes or order



