Long-term Dynamics of Large-scale Long-term Dynamics of Large-scale Epileptic Brain Networks Epileptic Brain Networks

Klaus Lehnertz Klaus Lehnertz

Interdisciplinary Center for Complex Systems

Dept. of Epileptology Neurophysics Group

Helmholtz-Institute for Radiation- and Nuclear Physics

University of Bonn, Germany

Complex Network Brain

Epilepsy

Greek term for *seizure;* disease first mentioned ~ 1750 BC

 \triangleright ~ 1 % of world population suffers from epilepsy

 \triangleright famous people suffering from epilepsy: Sokrates, Alexander the Great, Julius Caesar, Lenin, Flaubert, Dostojevski, Carroll, Poe, Berlioz, Paganini, Händel, van Gogh, Newton, Pascal, Helmholtz, Nobel

Extreme Event Epileptic Seizure

- \triangleright frequency: \sim 3 szrs/mon (max.: several 100 szrs/day)
- \triangleright (apparently) non-predictable (exception: reflex epilepsies)
- \triangleright duration: 1 2 min (exception: status epilepticus > 5 min)
- \triangleright during the seizure: impaired mental functions, altered consciousness, loss of consciousness, involuntary movements, …
- \triangleright after the seizure: neurologic dysfunctions, depression, …
- \triangleright main seizure types:

focal seizure (with/without generalization) generalized seizure (apparently instantaneous)

Epilepsy: Primary Generalized Seizure

Epilepsy: Focal Seizure with spreading

 \overline{y}

Epilepsy is network disease !

Treatment of Epilepsy

- **antiepileptic drugs**; primary therapy; success: ~ 70 % side effects, long-term treatment
- epilepsy surgery; option for \sim 5 10 % of patients requirement: localize and delineate epileptic focus from functionally relevant brain areas success: $\sim 60 \%$ (15 % – 85 %) long-term outcome, surgery-induced alterations?
- alternative therapies; for ~ 22 % of patients seizure prediction, seizure control success: ?

Epilepsy --- Unsolved Issues

- basic mechanisms in humans
- where in the brain and when and why do seizures start ?
- seizure precursors ?
- where and why do seizures spread ? consistency ?
- when and why do seizure end ? consistency ?
- seizure-free interval: normal? pathologic?
- interactions epilepsy \leftrightarrow normal brain functioning (cognition)
- long-term (yrs) dynamics
- epileptic focus vs. epileptic network

Epileptic Focus vs. Epileptic Network

traditional concept: *epileptic focus*

- circumscribed area of the brain
- critical amount of neurons \rightarrow epileptic seizures

recent evidence: *epileptic network*

- *-* functionally and anatomically connected brain structures
- activity in any one part affects activity in all the others
- vulnerability to seizures in any one part of the network influenced by activity everywhere else in the network
- seizures may entrain large neural networks from any given part
- growing evidence from imaging, electrophysiological, and modeling studies

Inferring Functional (Interaction) Brain Networks

recordings of brain dynamics (EEG, MEG, fMRI, …)

$$
\mathbf{A} = f(\mathbf{I})
$$

- thresholding

- significance testing

- …

Functional Brain Networks: Epilepsy vs. Controls

epileptic networks are more regular than healthy ones

- 21 patients, 23 controls
- scalp EEG recordings (29 sites)
- eyes-open (15 min)
- eyes-closed (15 min)
- mean phase coherence (frequency-adaptive; -selective)
- binary networks (fixed mean degree, thresholding)
- weighted networks (different normalizations)
- clustering coefficient *C*
- average shortest path length *L*

 $*$ p < 0.05 $0.5 - 5$ Hz (δ -band)

network sync: a mechanism for seizure termination?

Epileptic Networks during Status Epilepticus

network sync: a mechanism for seizure termination?

functional topology

from

more random

to

more regular back to *more random*

- 60 patients, 100 seizures
- intracranial EEG recordings (53 ± 21 sites)
- max. cross-correlation fct.
- thresholding (*A* fully connected)
- clustering coefficient *C*
- average shortest path length *L*
- *synchronizability* S= $\lambda_{\text{max}}/\lambda_{\text{min}}$ from Laplace matrix
- comparison with random networks (prescribed degree sequence)

K. Schindler et al., Chaos 18, 033119, 2008 see also: Ponten et al., Clin. Neurophysiol. 118, 918, 2007 Kramer et al., Epilepsy Res. 79, 173, 2008 Kramer et al., J. Neurosci. 30, 1007, 2010

networks are assortative

- *- harder to synchronize*
- *- network disintegration*
- *less vulnerable to attacks*

- intracranial EEG recordings $(53 \pm 21 \text{ sites})$
- correlation coefficient
- max. of cross-correlation fct
- thresholding (*A* fully connected)
- assortativity coefficient *a*
- comparison with surrogate networks (based on IAAFT time series surrogates)

how important is the epileptic focus?

- *- important in only 35 % of cases*
- *- neighborhood more important (>50%)*
- *neighborhood → bridge*
- *improved prevention techniques?*
- 52 patients, 86 seizures
- intracranial EEG recordings $(53 \pm 21 \text{ sites})$
- correlation coefficient
- max. of cross-correlation fct
- weighted networks (*A* normalized)
- various centrality indices: strength (*C^S*), eigenvector, closeness, betweenness (*C^B*)
- comparison with surrogate networks (based on IAAFT time series surrogates)

similar findings with eigenvector centrality

similar findings with closeness centrality

Strength of Interactions in Epileptic Networks

Direction of Interactions in Epileptic Networks

Strength and Direction of Interactions

patient group:

- highest strength of interactions within the epileptic focus (gradually declines with increasing distance)
- epileptic focus "drives" all other brain areas
- largely unaffected by physiological activities (e.g. circadian rhythms)

single patient

- very high variability (… reasons?)

similar findings (phase-based vs information-theoretic approaches)

- what kind of synchronization phenomena ?

(phase, generalized, …) ?

- confounding variables ?

Long-Term Dynamics of Epileptic Networks (*C, L*)

mainly reflects daily rhythms, epileptic process only marginally

- 13 patients, 75 seizures
- intracranial EEG recordings (> 2100 h) (56 sites, range: 24-72)
- mean phase coherence (frequency-adaptive)
- thresholding (fixed mean degree)
- clustering coefficient *C*
- average shortest path length *L*

 0.01

 0.1

period [h]

 $10⁰$

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

h s q pezilemou

 C_n $\qquad \qquad \qquad \qquad$ $\uparrow \qquad$ $\qquad \qquad$ $\qquad \qquad$ \qquad \qquad

10

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 0.01

 0.1

100

daily rhythms

period [h]

precursor dynamics ?

10

100

Long-Term Dynamics of Epileptic Networks (*a*)

mainly reflects daily rhythms, easier to synchronize pre-ictally?

- 7 patients, 16 seizures
- intracranial EEG recordings (> 1000 h) (90 sites, range: 44-90)
- mean phase coherence (frequency-adaptive)
- thresholding (pre-def. link density)
- assortativity *a*
- comparison with surrogate networks

Long-Term Dynamics of Epileptic Networks

how epileptic brain networks explore the space (a,C,L) of accessible network topologies

Long-Term Node Importance in Epileptic Networks

importance of brain regions is highly variable

- 17 patients, 83 seizures
- intracranial EEG recordings (> 2100 h; sites range: 16-64)
- mean phase coherence (frequency-adaptive)
- normalized weighted networks
- strength and betweenness centrality (*C^S*, *C^B*) and relationship to focus (F), neighborhood (N), other brain areas (O)

C^S C^B

 $\cal N$

 \mathcal{O}

2 4

period [h]

12 24 48 0.5 1

Patient A

C Geier & KL, Chaos 27, 043112, 2017

 $0.5 - 1$ $\overline{2}$

period [h]

 Λ

 \mathcal{O}

all p

atie

nts

First International Summer Institute on Network Physiology (ISINP)

Long-Term Node Importance in Epileptic Networks

importance of brain regions is highly variable

under null hypothesis: occurrence probabilities determined by population densities of *F,N,O*

C Geier & KL, Chaos 27, 043112, 2017

 $\mathcal N$

 \mathcal{O}

 $\mathcal N$

 \mathcal{F} departure from category \mathcal{O}

 40

rel. 20

left: *C^S* right: *C^B*

hatched bars: patients with no significant alterations cross-hatched bars: patients with no alterations

Seizure Prediction and Prevention

prediction feasible, but …

… not in all patients … not in all seizures

unsolved issues:

- **- when to prevent**
- **- where to prevent**
- **- how to disturb an adaptive system?**

from: Cook et al., Lancet Neurol 2013; 12: 563

Searching for Seizure Precursors

seizure precursors

- **best identifiable from interaction measurements**
- synchronization vs. de-synchronization
- when: up to hours before onset
- where: mostly far off epileptic focus
- dependent on epilepsy type
- targeted interventions

f= focus, *n* = *neighborhood*, *o* = *other*

 \mathbb{Z}/\mathbb{Z} unifocal epilepsies (N=20) multifocal epilepsies (N=16)

Cognition modifies Functional Brain Networks

Learning- and memory-related processes

- incidental vs. intentional learning; free recall of learned material
- number of recalled words $N^{}_1,\,N^{}_2$
- 13 patients, 20 healthy controls; non-invasive EEG, 29 sites
- mean phase coherence
- binary networks (thresholding)
- clustering coefficient *C*
- average shortest path length *L*

Cognition modifies Functional Brain Networks

group statistics:

- clustering coefficient: slightly larger (p<0.05) during intentional learning $T₂$ than during incidental learning T_1 or during baseline T_b
- average shortest path length: no significant change

Cognition modifies Functional Brain Networks

MT Kuhnert et al., PLoS One 8, e80273, 2013

Modeling the Epileptic Process: On which Scales ?

integrate-and-fire FitzHugh-Nagumo Morris-Lecar Hodgkin-Huxley

single cell models distributed neuronal networks

ion channels neurotransmitter synapses

branching structure

network size (~10⁵) connectivity

inhibition/excitation feed back/ feed forward coupling

interneurons / glia cells

neuronal population models

NDE, SDE, coupled ODEs, (s)PDE, NODE, lumped parameter, mean field approaches

EEG phenomena

transitions

- bistability
	- parameter changes, noise

Modeling the Epileptic Process: Neural Mass Models

Modeling Epileptic Network Dynamics

The Journal of Neuroscience, September 15, 2004 · 24(37):8075-8083 · 8075

Neurobiology of Disease

Epilepsy in Small-World Networks

Theoden I. Netoff,^{1,3} Robert Clewley,^{2,3} Scott Arno,^{1,3} Tara Keck,^{1,3} and John A. White^{1,3} ¹Department of Biomedical Engineering, ²Department of Mathematics and ³Center for BioDynamics and Center for Memory and Brain, Boston University, Boston, Massachusetts 02215

"By *changing parameters* such as the synaptic strengths, number of synapses per neuron, proportion of local versus longdistance connections, we induced normal, seizing, and bursting behaviors. […] explains *how specific changes in the topology or synaptic strength* in the model cause *transitions from normal to seizing and then to bursting*. These behaviors appear to be general properties of excitatory networks."

Modeling Epileptic Network Dynamics

PHYSICAL REVIEW E 76, 021920 (2007)

Internetwork and intranetwork communications during bursting dynamics: Applications to seizure prediction

S. Feldt, ^{1,*} H. Osterhage,^{2,3} F. Mormann,^{2,4} K. Lehnertz,^{2,3,5} and M. Zochowski^{1,6} ¹Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 2 Department of Epileptology, University of Bonn, Bonn, Germany ³Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany ⁴California Institute of Technology, Division of Biology, 216-76, Pasadena, CA 91125, USA ⁵Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany ⁶Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA (Received 9 March 2007; revised manuscript received 23 May 2007; published 20 August 2007) - two interacting networks

- IF neurons (N=225)
- small-world topology

- EEG data - MTLE patient

- \bullet $N \times N$ oscillators
- connect each oscillator to its m nearest neighbors
- cyclic boundary conditions (torus)
- replace fraction p of connections by connections between randomly chosen oscillators

pulse-coupled phase oscillators (IF neurons)

- intrinsic dynamics: $\phi_n = 1, \phi_n \in (0, 1]$
- oscillator *n* fires $(\phi_n(t_f) = 1)$
	- excite all oscillators n' connected to n $\phi_i(t_f^+) = R(\phi_{n'}(t_f)) = \Delta(\phi_{n'}(t_f)) + \phi_{n'}(t_f)$
	- reset oscillator *n*: $\phi_n(t_f^+) = 0$

integrate-and-fire oscillators

- τ time delay
- ϑ refractory period
- b coupling strength

Measuring synchrony with Kuramoto's order parameter: $r(t)$

$$
e^{2\pi i \phi_n(t)}
$$

 $\in N$

$N = 500 \times 500$, $m = 50$, $\tau = 0.01$, $b = 0.01$, various v 0.8 0.6 $r(t)$ 0.4 0.2 0 1000 2000 3000 4000 5000 0 \boldsymbol{t} 3500 1000 3000 2500 100 trequency frequency 2000 1500 10 1000 500 $\overline{0}$ 1000 2000 3000 4000 5000 6000 7000 $\overline{0}$ $\mathbf 0$ 10 20 30 40 50 60 waiting time event duration

$N = 500 \times 500$, $m = 50$, $\tau = 0.01$, $b = 0.01$, $v = 0.05$

φ

- small-amplitude oscillations with average phase velocity of oscillators

- non-converging macroscopic behavior, network-generated rhythms

- comparable values of *r(t)* during ascending and descending part of event
- distributed asynchronous regions during ascending part
- connected asynchronous regions during descending part

mechanisms:

- stability of asynchronous regions long-range connections
- stability of synchronous regions
- growing of asynchronous regions short-range connections
- shrinking of asynchronous regions

- *no inhibition*
- *no pacemaker*
- *rhythm is network phenomenon*

- *: irregular macroscopic behavior \triangleright irregular macroscopic dynamics and sz-like events due to self-organized generation of chimera states
- cumulative size of asynchronous regions determined by control parameters
- \triangleright event initiation via long-range connections
- even termination via short-range connections
- \triangleright importance of complex coupling topology

FitzHugh-Nagumo oscillators

$$
\dot{x}_i = x_i(a - x_i)(x_i - 1) - y_i + k \sum_{j=1}^n A_{ij}(x_j - x_i),
$$

$$
\dot{y}_i = b_i x_i - c y_i.
$$
 (1)

- small-world network based
- on *n* = 100 x 100 lattice - weak coupling (*k* ~10-3)
- cyclic boundary conditions
- 60 nearest neighbors
- rewiring probability of *p* = 0*.*2
- *a, bⁱ , c* fixed
- observable: spatial mean of *x*

- "critical mass"

- channel-like structures
- mixed-mode oscillations

Conclusions

- epilepsy: disorder of large-scale neuronal networks (structure & function)

- paradigm shift: epileptic focus \rightarrow epileptic network

- seizure self-termination through synchronization \rightarrow new therapeutic options?

- characterization of individual epileptic network \rightarrow individualized treatment?

