Long-term Dynamics of Large-scale Epileptic Brain Networks

Klaus Lehnertz

University of Bonn, Germany

Helmholtz-Institute for Radiation- and Nuclear Physics

Complex Network Brain

Epilepsy

➤ Greek term for *seizure*; disease first mentioned ~ 1750 BC

> ~ 1 % of world population suffers from epilepsy

➤ famous people suffering from epilepsy: Sokrates, Alexander the Great, Julius Caesar, Lenin, Flaubert, Dostojevski, Carroll, Poe, Berlioz, Paganini, Händel, van Gogh, Newton, Pascal, Helmholtz, Nobel

Extreme Event Epileptic Seizure

- frequency: ~ 3 szrs/mon (max.: several 100 szrs/day)
- > (apparently) non-predictable (exception: reflex epilepsies)
- be duration: 1 − 2 min (exception: status epilepticus > 5 min).
- during the seizure: impaired mental functions, altered consciousness, loss of consciousness, involuntary movements, ...
- > after the seizure: neurologic dysfunctions, depression, ...
- main seizure types:

focal seizure (with/without generalization) generalized seizure (apparently instantaneous)

Epilepsy: Primary Generalized Seizure

Epilepsy: Focal Seizure with spreading

Epilepsy is network disease!

Treatment of Epilepsy

• antiepileptic drugs; primary therapy; success: ~ 70 % side effects, long-term treatment

• **epilepsy surgery**; option for ~ 5 – 10 % of patients requirement: localize and delineate epileptic focus from functionally relevant brain areas success: ~ 60 % (15 % – 85 %) long-term outcome, surgery-induced alterations?

 alternative therapies; for ~ 22 % of patients seizure prediction, seizure control success: ?

Epilepsy --- Unsolved Issues

- basic mechanisms in humans
- where in the brain and when and why do seizures start?
- seizure precursors?
- where and why do seizures spread? consistency?
- when and why do seizure end? consistency?
- seizure-free interval: normal? pathologic?
- interactions epilepsy ↔ normal brain functioning (cognition)
- long-term (yrs) dynamics
- epileptic focus vs. epileptic network

Epileptic Focus vs. Epileptic Network

traditional concept: epileptic focus

- circumscribed area of the brain
- critical amount of neurons → epileptic seizures

recent evidence: epileptic network

- functionally and anatomically connected brain structures
- activity in any one part affects activity in all the others
- vulnerability to seizures in any one part of the network influenced by activity everywhere else in the network
- seizures may entrain large neural networks from any given part
- growing evidence from imaging, electrophysiological, and modeling studies

Inferring Functional (Interaction) Brain Networks

Functional Brain Networks: Epilepsy vs. Controls

weighted

epileptic networks are more regular than healthy ones

- 21 patients, 23 controls
- scalp EEG recordings (29 sites)
- eyes-open (15 min)
- eyes-closed (15 min)
- mean phase coherence (frequency-adaptive; -selective)
- binary networks (fixed mean degree, thresholding)
- weighted networks (different normalizations)
- clustering coefficient C
- average shortest path length L

binary

network sync: a mechanism for seizure termination?

Epileptic Networks during Status Epilepticus

network sync: a mechanism for seizure termination?

functional topology

from

more random

to

more regular

back to

more random

- 60 patients, 100 seizures
- intracranial EEG recordings (53 ± 21 sites)
- max. cross-correlation fct.
- thresholding (A fully connected)
- clustering coefficient C
- average shortest path length *L*
- synchronizability $S=\lambda_{max}/\lambda_{min}$ from Laplace matrix
- comparison with random networks (prescribed degree sequence)

networks are assortative

- harder to synchronize
- network disintegration
- less vulnerable to attacks

- 60 patients, 100 seizures
- intracranial EEG recordings (53 ± 21 sites)
- correlation coefficient
- max. of cross-correlation fct
- thresholding (A fully connected)
- assortativity coefficient a
- comparison with surrogate networks (based on IAAFT time series surrogates)

how important is the epileptic focus?

- important in only 35 % of cases
- neighborhood more important (>50%)
- neighborhood → bridge
- improved prevention techniques?
- 52 patients, 86 seizures
- intracranial EEG recordings (53 ± 21 sites)
- correlation coefficient
- max. of cross-correlation fct
- weighted networks (A normalized)
- various centrality indices: strength (C^S), eigenvector, closeness, betweenness (C^B)
- comparison with surrogate networks (based on IAAFT time series surrogates)

similar findings with eigenvector centrality

similar findings with closeness centrality

Strength of Interactions in Epileptic Networks

35 patients; Ø 51 sites; Ø 114 hrs iEEG recording; szr-free interval only

Direction of Interactions in Epileptic Networks

35 patients; Ø 51 sites; Ø 114 hrs iEEG recording; szr-free interval only

Strength and Direction of Interactions

patient group:

- highest strength of interactions within the epileptic focus (gradually declines with increasing distance)
- epileptic focus "drives" all other brain areas
- largely unaffected by physiological activities (e.g. circadian rhythms)

single patient

very high variability (... reasons?)

similar findings (phase-based vs information-theoretic approaches)

- what kind of synchronization phenomena? (phase, generalized, ...)?
- confounding variables?

Long-Term Dynamics of Epileptic Networks (C, L)

mainly reflects daily rhythms, epileptic process only marginally

exemplary frequency distributions

power spectral density estimates (grand average)

- 13 patients, 75 seizures
- intracranial EEG recordings (> 2100 h) (56 sites, range: 24-72)
- mean phase coherence (frequency-adaptive)
- thresholding (fixed mean degree)
- clustering coefficient C
- average shortest path length L

Long-Term Dynamics of Epileptic Networks (a)

mainly reflects daily rhythms, easier to synchronize pre-ictally?

- 7 patients, 16 seizures
- intracranial EEG recordings (> 1000 h)(90 sites, range: 44-90)
- mean phase coherence (frequency-adaptive)
- thresholding (pre-def. link density)
- assortativity a
- comparison with surrogate networks

Long-Term Dynamics of Epileptic Networks

how epileptic brain networks explore the space (a,C,L) of accessible network topologies

Long-Term Node Importance in Epileptic Networks

importance of brain regions is highly variable

- 17 patients, 83 seizures
- intracranial EEG recordings(> 2100 h; sites range: 16-64)
- mean phase coherence (frequency-adaptive)
- normalized weighted networks
- strength and betweenness centrality (C^S , C^B) and relationship to focus (F), neighborhood (N), other brain areas (O)

Long-Term Node Importance in Epileptic Networks

departure from category

Seizure Prediction and Prevention

prediction feasible, but ...

- ... not in all patients
- ... not in all seizures

unsolved issues:

- when to prevent
- where to prevent
- how to disturb an adaptive system?

from: Cook et al., Lancet Neurol 2013; 12: 563

Searching for Seizure Precursors

seizure precursors

- best identifiable from interaction measurements
- synchronization vs. de-synchronization
- when: up to hours before onset
- where: mostly far off epileptic focus
- dependent on epilepsy type
- targeted interventions

f= focus, n = neighborhood, o = other

unifocal epilepsies (N=20)

multifocal epilepsies (N=16)

Cognition modifies Functional Brain Networks

incidental

intentional

rest min

$$T_2^I$$
 FF 3 1 min

 T_2^r min

Learning- and memory-related processes

- incidental vs. intentional learning; free recall of learned material
- number of recalled words N_1 , N_2
- 13 patients, 20 healthy controls; non-invasive EEG, 29 sites
- mean phase coherence
- binary networks (thresholding)
- clustering coefficient *C*
- average shortest path length *L*

Cognition modifies Functional Brain Networks

group statistics:

- clustering coefficient: slightly larger (p<0.05) during intentional learning T_2 than during incidental learning T_1 or during baseline T_b
- average shortest path length: no significant change

Cognition modifies Functional Brain Networks

Modeling the Epileptic Process: On which Scales?

integrate-and-fire FitzHugh-Nagumo Morris-Lecar Hodgkin-Huxley

ion channels neurotransmitter synapses

branching structure

single cell models distributed neuronal networks

network size (~10⁵) connectivity

inhibition/excitation feed back/ feed forward coupling

interneurons / glia cells

neuronal population models

NDE, SDE, coupled ODEs, (s)PDE, NODE, lumped parameter, mean field approaches

EEG phenomena

transitions

- bistability
- parameter changes, noise

Modeling the Epileptic Process: Neural Mass Models

- + models able to "seize"
- + transition to seizure-like activity
- + spread of seizure-like activity
- no self-termination of activity
- mostly noise driven
- time dependent control parameter

Modeling Epileptic Network Dynamics

The Journal of Neuroscience, September 15, 2004 • 24(37):8075 – 8083 • 8075

Neurobiology of Disease

Epilepsy in Small-World Networks

Theoden I. Netoff, 1,3 Robert Clewley, 2,3 Scott Arno, 1,3 Tara Keck, 1,3 and John A. White 1,3

¹Department of Biomedical Engineering, ²Department of Mathematics and ³Center for BioDynamics and Center for Memory and Brain, Boston University, Boston, Massachusetts 02215

"By *changing parameters* such as the synaptic strengths, number of synapses per neuron, proportion of local versus long-distance connections, we induced normal, seizing, and bursting behaviors. [...] explains *how specific changes in the topology or synaptic strength* in the model cause *transitions from normal to seizing and then to bursting*. These behaviors appear to be general properties of excitatory networks."

Modeling Epileptic Network Dynamics

PHYSICAL REVIEW E 76, 021920 (2007)

Internetwork and intranetwork communications during bursting dynamics: Applications to seizure prediction

S. Feldt, ^{1,*} H. Osterhage, ^{2,3} F. Mormann, ^{2,4} K. Lehnertz, ^{2,3,5} and M. Żochowski ^{1,6}

¹Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

²Department of Epileptology, University of Bonn, Bonn, Germany

³Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany

⁴California Institute of Technology, Division of Biology, 216-76, Pasadena, CA 91125, USA

⁵Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany

⁶Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 9 March 2007; revised manuscript received 23 May 2007; published 20 August 2007)

- two interacting networks
- IF neurons (N=225)
- small-world topology

- EEG data
- MTLE patient

- N × N oscillators
- connect each oscillator to its m nearest neighbors
- cyclic boundary conditions (torus)
- replace fraction p of connections by connections between randomly chosen oscillators

pulse-coupled phase oscillators (IF neurons)

- intrinsic dynamics: $\dot{\phi}_n = 1, \phi_n \in (0, 1]$
- oscillator n fires $(\phi_n(t_f) = 1)$
 - excite all oscillators n' connected to n $\phi_i(t_f^+) = R(\phi_{n'}(t_f)) = \Delta(\phi_{n'}(t_f)) + \phi_{n'}(t_f)$
 - reset oscillator n: $\phi_n(t_f^+) = 0$

integrate-and-fire oscillators

- au time delay
- ϑ refractory period
- b coupling strength

Measuring synchrony with Kuramoto's order parameter: r(t)

$$r(t) = 1/|N| \sum_{n \in N} e^{2\pi i \phi_n(t)}$$

 $N = 500 \times 500$, m = 50, $\tau = 0.01$, b = 0.01, v = 0.05

- comparable values of r(t) during ascending and descending part of event
- distributed asynchronous regions during ascending part
- connected asynchronous regions during descending part

mechanisms:

- stability of asynchronous regions
- stability of synchronous regions
- growing of asynchronous regions
- shrinking of asynchronous regions

long-range connections

short-range connections

- > no inhibition
- > no pacemaker
- > rhythm is network phenomenon
- irregular macroscopic dynamics and sz-like events due to self-organized generation of chimera states
- cumulative size of asynchronous regions determined by control parameters
- event initiation via long-range connections
- even termination via short-range connections
- importance of complex coupling topology

FitzHugh-Nagumo oscillators

$$\dot{x}_i = x_i(a - x_i)(x_i - 1) - y_i + k \sum_{j=1}^n A_{ij}(x_j - x_i),$$

$$\dot{y}_i = b_i x_i - c y_i.$$
(1)

- small-world network based on $n = 100 \times 100$ lattice
- weak coupling $(k \sim 10^{-3})$
- cyclic boundary conditions
- 60 nearest neighbors
- rewiring probability of p = 0.2
- a, b_i, c fixed
- observable: spatial mean of x

- "critical mass"
- channel-like structures
- mixed-mode oscillations

Conclusions

- epilepsy: disorder of large-scale neuronal networks (structure & function)
- paradigm shift: epileptic focus → epileptic network
- seizure self-termination through synchronization
 - → new therapeutic options?
- characterization of individual epileptic network
 - → individualized treatment?

