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Complex (or Complicated?) Network Brain

# neurons: ~ 1010 control; movement;
# synapses/neuron: ~ 103 - 104 percgption; attention;
length of all connections: ~107-10°m learning; memory;

(~2.5 x distance earth-moon)
connectivity factor: ~ 10-6 (adult)

connectivity factor: ~ 10-4 (juvenile) 48
ion channels / neuron: ~ 102 - 103 4=
neurotransmitter &

other active substances: ~ 50
# glia cells: ~3-fold # neurons

structure <« > function

\ fluctuations /

(endogenous/exogenous)

knowledge; emaotions;
motivation; language;
thinking; planning;
personality; self-identity;
CONSCIiousness; ...;
dysfunctions

order +— disorder
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Brain Networks - Relevance

properties of functional/structural brain networks are sensitive to:

behavioral variability Alzheimer's disease
cognitive ability schizophrenia

genetic information acute depression

shared genetic factors multiple sclerosis

gender attention deficit hyperact. dis.
age spinal cord injury

drugs epilepsy
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Inferring Networks of the Brain - Structure

small-scale:

nodes -2 neurons (glia cells?)
links -2 synapses

desirable, but hard (impossible?) to access

medium-scale: ?7?

large-scale:

nodes -> brain regions
links > fiber bundles

high-res. MRI, DTI, parcellation schemes, ...
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Inferring Networks of the Brain - Function

small-scale:

nodes -> single neuron (glia) dynamics
links > synaptic (other) interactions

emerging technology

large-scale:

nodes -2 sensors (dynamics of networks of neuron networks)
links > interactions (weighted and/or directed),
time series analysis

EEG, iIEEG, MEG, fMRI, ... medium-scale: 777
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Inferring Functional (Interaction) Brain Networks

recordings of brain dynamics (EEG, iEEG, MEG, fMRI, ...

Aty A

NP P -

\ 4

sensor
node

- thresholding
- significance testing

Sensor
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From Multichannel Data to Networks

Network:
set of nodes connected by links
binary, weighted, directed, weighted and directed
various approaches for characterization

Ansatz for node and link identification:
nodes < sensors <« subsystems
links < interactions between subsystems

Caveat:
network inference is an inverse problem ... no unique solution !
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Challenges

- node identification (nodes «— sensors «— subsystems)
spatial sampling, discretization

- link identification (link < interactions)
temporal sampling
Indirect vs. direct interactions, common sources
reliability of estimators for interactions

- interpretation of findings
comparison of empirical networks
appropriate null models / surrogate networks
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Node Identification

spatially extended dynamical system (brain, climate, etc)
decomposition into (independent) subsystems ....... justified?

placement of sensors
- optimal sampling of dynamics of subsystems
- spatial organization of subsystems usually not known
- educated guess
- mostly rectangular arrangement of sensors ..... other?
- distance between sensors ?
Nyquist-Shannon sampling theorem,
but requires knowledge about (sub-)system(s) dynamics
- accuracy / reproducibility of sensor placement
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Node Identification

CHAOS 20, 013134 (2010)

From brain to earth and climate systems: Small-world interaction networks
or not?

Stephan Bialonski,* Marie-Therese Horstmann, and Klaus Lehnertz”

Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany;
Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nufallee 14-16, 53115 Bonn,
Germany, and Interdisciplinary Center for Complex Systems, University of Bonn, Rimerstr. 164,

53117 Bonn, Germany

(Received 22 December 2009; accepted 22 February 2010; published online 31 March 2010;
publisher error corrected 2 April 2010)

We consider recent reports on small-world topologies of interaction networks derived from the
dynamics of spatially extended systems that are investigated in diverse scientific fields such as
neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experi-
mental situations, we have identified an important constraint when characterizing such networks:
indications of a small-world topology can be expected solely due to the spatial sampling |of the
system along with the commonly used time series analysis based approaches to network
characterization. © 2010 American Institute of Physics. [doi:10.1063/1.3360561]
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Node |Identification

brain activity (MEG) spatial model
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S. Bialonski, MT Horstmann & KL @ First International Summer Institute on Network Physiology (ISINP)
Chaos 20, 013134, 2010




Node Identification

rectangular arrangement
of sensors

+

link identification error

In the per mille — percent

— small world network

S. Bialonski, MT Horstmann & KL @ First International Summer Institute on Network Physiology (ISINP)
Chaos 20, 013134, 2010




Node Identification

nodes < sensors < subsystems

- ansatz appears justified in many cases

- caveat: “‘wrong” spatial sampling can lead to
mis-characterization of network properties

- are there better approaches ?
refine sampling strategies ?
determine the actual structural organization?
coarse graining?
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Link Identification

link <~ interactions

- “good” observables, time scales

- temporal sampling (Nyquist-Shannon sampling theorem)
- measuring interactions

- confounding variables
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Link Identification: Temporal Sampling

Unraveling Spurious Properties of Interaction Networks
with Tailored Random Networks

Stephan Bialonski*?*, Martin Wendler®, Klaus Lehnertz'*?

1 Department of Epileptology, University of Bonn, Bonn, Germany, 2Helmholtz Institute for Radiation and Muclear Physics, University of Bonn, Bonn, Germany,
3 Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany, 4 Fakultat fur Mathematik, Ruhr-Universitat Bochum, Bochum, Germany

Abstract

We investigate interaction networks that we derive from multivariate time series with methods frequently employed in
diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences.
Mimicking experimental situations, we generate time series with finite length and varying frequency content but from
independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate
interdependencies between these time series. With clustering coefficient and average shortest path length, we observe
unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies
as compared to Erdos-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly
unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We
propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an
exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures — known for their
complex spatial and temporal dynamics - we show that such random networks help to distinguish network properties of
interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

Citation: Bialonski S, Wendler M, Lehnertz K (2011) Unraveling Spurious Properties of Interaction Networks with Tailored Random Metworks. PLoS OME 6(8):
e22826. doi:10.1371/joumal.pone.0022826
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Link Identification: Temporal Sampling

amp.

time

amp.

time

— time scales of the system
— choices to make:
- observation time
- (temporal) sampling frequency

- determines length of time series

temporal oversampling:

- temporal correlations

S. Bialonski, M Wendler & KL
Plos One 6, €22826, 2011
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Link Identification: Temporal Sampling

— N =100 time series 0.5
(T = 500 sampling points) C 0.4}
0.3¢

— for each time series:
— values independently drawn 0.2
from some probability distribution 0.1t

— temporal correlations induced

ko . o
y moving average of size M 0O 20 40 60 80 100
2.6
L
— signal interdependence:
) . 2.4}
abs. value of correlation coefficient
— binary networks via thresholding 2.2

(link density = 0.1)
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S. Bialonski, M Wendler & KL @ First International Summer Institute on Network Physiology (ISINP)
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Link Identification: Temporal Sampling

— N =100 time series
(T = 500 sampling points)

— for each time series:

— Vahlnc inNanandanth/ Arawn

lige]g
— tenr

byr  small-world networks
(C/IC,>2,L/IL. <2)

— sign *
abs. value of correlation coefficient

— binary networks via thresholding
(link density = 0.1)
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S. Bialonski, M Wendler & KL
Plos One 6, €22826, 2011
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Link Identification: Temporal Sampling

— N =100 time series
(T = 500 sampling points)

— for each time series:
— values independently drawn
from some probability distribution
— temporal correlations induced
by moving average of size M

-0.11¢

. _ O 20 40 60 80 100 M
— signal interdependence
abs. value of correlation coefficient

— binary networks via thresholding
(link density = 0.1)

S. Bialonski, M Wendler & KL @ First International Summer Institute on Network Physiology (ISINP)
Plos One 6, €22826, 2011



Link Identification: Temporal Sampling

— N =100 time series
(T = 500 sampling points)

— for each time <eries:

— value
from : _

—temp assortative networks
by mq (a>0)

- 0.1

. _ 0O 20 40 60 80 100 M
— signal interdependence
abs. value of correlation coefficient

— binary networks via thresholding
(link density = 0.1)

S. Bialonski, M Wendler & KL @ First International Summer Institute on Network Physiology (ISINP)
Plos One 6, €22826, 2011




Link Identification: Measuring Interactions

binary networks o m—

- thresholding
criteria for threshold selection
uniqueness of threshold
“reliability” of links

sensor

- significance testing 1?
choice of significance level adjacency matrix A
multiple testing problem e
“reliability” of links

which to choose? .... other methods ?

node
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Link Identification: Measuring Interactions

strength matrix S

weighted networks

- est. strength of interaction (s)
~ coupling strength (k);
~ structural properties (0)
~ other?
-s=F(k, o,...)
- how does F look like?
- given F, resolve “weak” (“strong”) couplings

sensor

- which nontrivial properties of data are
captured by network measures?
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Link Identification: Measuring Interactions

link < interactions

assumption: (sub-)systems interact!
probing (active) vs. observing (passive)

probing (actio est reactio)
repeated measurements,
limited number of data points,
nonstationarity, “true” dynamics?

observing (if probing is not possible)
large amount of data, nonstationarity
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Link Identification: Measuring Interactions

(linear/nonlinear) time series analysis techniques
- statistical approaches

- approaches in time/frequency domain

- information theoretical approaches

- state-space-based approaches

- Fokker-Planck-formalism

requirements

- different aspects of dynamics / synchronization phenomena

- robustness against noise/measurement errors

- strength and/or direction of interaction (other properties?)

- computing time (field data analyses)

- interpretability (causality? direct vs. indirect; common sources)
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Link Identification: Measuring Interactions

- mostly bivariate analysis techniques

- applied to all pairwise interactions ..... justified ?

- impact of indirect interactions (other confounders ?)
— partial measures ..... only recently

..... reliable ? .....widely applicable ?

- true multivariate approaches
MVAR, random matrix theory ..... rare ..... reliable ?

wide applicability not yet shown
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Link Identification: Confounding Variables

- node dynamics
different natural frequencies, noise distributions,
dimensionalities,..
more active vs. more passive system
- finiteness of data (N and T)
- univariate properties of dynamics (e.g. power spectral contents)
- time scales (node dynamics, coupling, due to sampling)
- bias due to time series analysis techniques

- incomplete measurements
direct/indirect interactions, differentiability?
common sources

- other ?
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Strength of Interactions and Couplings

active experiment: coupling function known, coupling strength k adjustable

A

Mmax

strength of interaction (s)

min |

>

coupling strength (k)

... and with unknown systems?

@ First International Summer Institute on Network Physiology (ISINP)




Confounding Variables: Common Sources

mean phase coherence

s
R=|=Y" exp(i(®alj) — ()|

j=1

phase lag index

.‘I

P = n(sin(®,(j) — ©u(j))]].

1
.1"": . —1

weighted phase lag index

> sin (D, (j) — Dy(j))
j=1

b I

> |sin(®y(j) — Pu(j))]
=1

Modeling impact of
common sources

superposition with a<[0,1)
Salj) = (1 —a)s.7) + wsplf), Splf) = splj), OF

splj) = (1 — a)sp(j) + asalf), 5a(j) = 52(J),

mixing with a.€[0,0.5)

Sal7) = (1 — a)saly) + asply),

5p(7) = (1= @)sy (i) + asa (i),

F. Mormann et al., Physica D 144, 358, 2000 @ First International Summer Institute on Network Physiology (ISINP)

C. J. Stam et al. Hum Brain Mapp 28, 1178, 2007
M. Vinck et al. Neurolmage 55, 1548, 2011

S. Porz, M. Kiel & KL Chaos 24, 033112, 2014



Confounding Variables: Common Sources

Rossler..—r 5 + Lorenz Rissler,,—g 5 + Lorenz Rissler,,—g 5 — Lorenz

coupled oscillator models

R
- strongly affected by CS
- more robust to noise (meas. + dyn.)

P and P,

- less influenced by CS

- less robust to noise (compared to R)

- dependent on oscillator type and
direction of coupling !

- no advantage of P, over P

S. Porz, M. Kiel & KL Chaos 24, 033112, 2014 @ First International Summer Institute on Network Physiology (ISINP)



- 20 h iEEG recording, seizure-free interval
- moving-window analysis (20,48 s; 4096 data points)

IIIIII

Ref-Electr.:
GLA1+GLAZ2

SOZ:
GLAG

recording contacts

Lesion:
GLD3+GLD4

Ko n o = = = = oo

recording contacts recording contacts

RN m— — std 7, P T

0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 010 0.15 0.20

S. Porz, M. Kiel & KL Chaos 24, 033112, 2014 @ First International Summer Institute on Network Physiology (ISINP)



Confoundlng Variables: Common Sources

equivalence (light gray)
non-equivalence (dark gray)
of power spectra
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S. Porz, M. Kiel & KL Chaos 24, 033112, 2014 @ First International Summer Institute on Network Physiology (ISINP)




Link Identification: Measuring Interactions

directed networks

- est. direction of interaction (d)

~ coupling direction (A)

~ structural properties (0)

~ coupling strength (k)

~ node dynamics

~ other?
-d=F(A o,k ...)
-F?
- resolve “correct” directionality / causality
- distinguish directionality @k=0 and @k=max
- which nontrivial properties of data are

captured by network measures?

sensor

direction matrix D

T T 5 O 1 IR
sensor

1?

adjacency matrix A

[ ]
B FEEEEEEES B4 =
B “EEER FEEE | W
node
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Measuring Directional Interactions

influencing factors:

- number of data points

- noise

- system properties

- uncoupled vs. fully coupled

direction D

coupling strength —

evaluate both
strength and direction

H. Osterhage et al., Phys Rev E 77, 011914, 2008; @ First International Summer Institute on Network Physiology (ISINP)
KL & H. Dickten, Phil Trans Roy Soc A 373, 20140094, 2015



Confounding Variables: Indirect Interactions

direct interaction Indirect interaction

—@

(Pearson) correlation coefficient partial correlation coefficient

J.|'_|' = 'r_n' kT ik

J1=r2)y1—r)
! LK K

similar approaches for other measures:
(renormalized) partial directed coherence,
partial (symbolic) transfer entropy,
partial phase dynamics, ....
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Confounding Variables: Indirect Interactions

- network of diffusively coupled Rossler oscillators
- adjustable: network size, coupling strength and topology,
edge density, amount of indirect interactions

D oW A IR S S
L L 1 L

relative amount
of indirect interactions

T T
0.5 D.75
edge density p

®x
BRXXXuxx
LT

50 100 N

F Y
DEDDDDDDDDDDDDDDD
O a A

A“‘
L“‘

relative amount of

relative improvement A
indirect interactions

=8
'_
[« 8
<
=
L
L
—
=
=
=
:
=l
b
)
c
b
e
g
-

PTA =~ 7% better than EMA

I |
40 60
network size N

I I I I
0.00 0.05 0.10 0.15

coupling strength ¢ EMA  PTA

k=
- nEMA

random network; p=0.4, N = 5 — 28.5% indirect interactions random network; p=0.4, ¢ = 0.09
mean values from 20 analysis set-ups with different initial conditions mean values from 20 analysis set-ups with different initial conditions

T. Rings & KL, Chaos, 26, 093106, 2016 First International Summer Institute on Network Physiology (ISINP)




Confounding Variables: Indirect Interactions

similar findings for:
- small-world networks
- scale-free networks

@
8
un
EY
o
2
@
o

0as 025 05
edge density p

P
-2.5% 0% 2.5% 0.50 0.75 1.00
relative improvement A inference quality i

random network; ¢ = 0.09
mean values from 20 analysis set-ups with different initial conditions

partialized approach (slightly) more efficient
for small networks or for large but sparse networks

T. Rings & KL, Chaos, 26, 093106, 2016 @ First International Summer Institute on Network Physiology (ISINP)



Confounding Variables: Indirect Interactions

intracranial EEG recording (76 hrs) from an epilepsy patient .
/6 recording sites, moving-window phase-based directionality estimation

driving

un
al

A=
|_f' 1
w1l
[
(W
::II

recording sites

recording sites

recording sites

consistent estimation of directionality: 95 % match

responding

T. Rings & KL, Chaos, 26, 093106, 2016
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Delayed Directed Interactions

day TLO1-TLO5 might
1

10
20
© 30
40
50

1 10 20 30 40 50 1 10 20 30

TRO1-TRO5  pight ay  TLL4-TLR4  pight

1 1 1 = I I | I

1 10 20 30 40 50 1 10 20 30 40 ! ‘110%3!}-1!}50111]:24]3(]4@:

- 36 h iEEG recording, patient with right MTLE - driving post. MTL -> ant. MTL
- averaged delayed symbolic transfer entropy - delay times: ~ 50 - 60 ms

H Dickten & KL, Phys Rev E 90, 062796,2014 First International Summer Institute on Network Physiology (ISINP)




Link Identification: Measuring Interactions

direction matrix D strength matrix S

weighted and directed networks ap, jommmmmmmmmmm g, g

Il EEEEEETEEEET
NN EEEEETEEEET EEE
O L . WO

- as before
- measures that can do both?
- if not, how to combine?

sensor
AN
sensor

sensor sensor

N7/

adjacency matrix A

node

?

node
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Interpretation of findings

comparison of empirical networks

- how similar are empirical networks?
group statistics, detection of changes,
temporal networks, ...

- which “distance” measures to choose

- what can trivially be expected?
... how to differentiate?

- is the network approach really necessary ??
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Interpretation of findings

null models and surrogates

analytical results for random graphs or lattices
(with prescribed properties, e.g. degree distr.)

surrogate networks from Monte Carlo simulations
preservation of arbitrary properties, define constraints,
null hypothesis testing

time series surrogates
phase-randomization, IAAFT, ...
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Interpretation of findings

weighted functional networks:

- trivial properties of link weights or
nodes strengths influence C and L

- surrogate networks
preserve link weight and/or node strength

- surrogate normalization
improve differentiability
iImprove interpretability

I |
] o i-1 -1

% Y ‘minmin® _".-*.-"!- -

B

=1 =1 SR =1

et

G. Ansmann & KL, Phys. Rev. E 84, 026103, 2011,

J Neurosci Methods 208, 165, 2012 @ First International Summer Institute on Network Physiology (ISINP)




Interpretation of findings

if networks do not differ, what does this mean?
- methodology
- statistical issues

if networks differ, what does this mean?
- relation to system dynamics
- other possible explanations
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What's next?

- ignore

- be careful (particularly when using toolboxes)

- interpret only changes

- test inference sensitivity using numerical simulations

- model both system dynamics and observation process

- improve methodologies!
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