# The New Field of Network Physiology: Mapping the Human Physiolome

# Plamen Ch. Ivanov

**Physics Department, Boston University** 

#### and

### **Division of Sleep Medicine**

**Brigham and Women's Hospital & Harvard Medical School** 







First International Summer Institute on Network Physiology (ISINP)

Lake Como School of Advanced Studies, 24 July - 29 July 2017





#### **Heart:** Vascular network

**Conducting network** (Purkinje dendrites)









#### **Lungs:** High resolution image

Airways

Arteries and veins



# Single alveolus vascular network





**Bronchial tree** 



#### **Brain:**

#### **Neuronal and vascular network**



# Human Organism

comprises diverse multi-component physiological systems

Brain

Neurologists

# Lungs ;

Eye

# Pulmonologists Muscle tone

Medical specialists traditionally focus on single organ systems

Plamen Ch. Ivanov, ISINP lecture, 24 July 2017

Cardiologists

Kidneys

Heart

# Human Organism – Integrated Network Coordinated Interactions of Organ Systems

Brain

Eye

# Muscle tone

# **Essential to: Maintain Health Generate distinct physiological states**

Plamen Ch. Ivanov, ISINP lecture, 24 July 2017

Kidneys

Heart

# **Disrupted Communications among Organ Systems**

Brain

Eye

### Auscle tone

Leads to: 1. Dysfunction of individual systems 2. Collapse of the entire organism

Plamen Ch. Ivanov, ISINP lecture, 24 July 2017

Kidneys

Heart

# Human Organism – Integrated Network of interconnected and interacting organ systems

Failure of one system may trigger a *cascade of failures* leading to a breakdown of the entire organism

Even structurally intact and functioning individual systems

→ Not sufficient for Health

Broad *clinical implications*: Coma, Multiple Organ Failure

### Yet, despite the importance to:

- understanding basic physiologic functions
- clinical relevance

we <u>do not know</u> how organ systems dynamically interact as a network to coordinate and optimize their functions

# **Current Research Focus** of Systems Biology and Integrative Physiology





### Our Research Program

# New Research Direction: Shifting the focus from single organ systems to the network of organ interactions



A new field, Network Physiology, is needed to probe the network of interactions among diverse physiologic systems. Network Physiology needed to probe ínteractions among diverse physiologic systems.

A new field

# **New Field of Research: Network Physiology**



# First Work: BOSTON

#### Nature Communications vol. 3:702 (2012)

"<u>Network Physiology</u> reveals relations between network topology and physiological function"

#### **Generated Broad Interests in the Community**





Plamen Ch. Ivanov, ISINP lecture, 24 July 2017

### **Challenges:** How to identify and quantify interactions among diverse systems?

# **Levels of Complexity:**

Level 1: noisy/non-stationary output signals of individual organ systems

Level 2: transient, nonlinear and coexisting forms of pair-wise coupling

Level 3: complex global behaviors out of interactions among diverse systems



Systems Biology: mapping the Human Genome



**Big Data** 

Before Human Genome Project



3 Billion DNA base pairs

After *Human Genome Project* 



### **Network Physiology**

Human body produces gigantic amount of Data & Information Continuous streams of waveforms and physiologic parameters



High frequency recordings (10<sup>2</sup>-10<sup>3</sup>Hz) Number of data points per person: (just for 100 parameters)

**Big Data** 

| 1 Day             | 1 Year                    | Life Time         |
|-------------------|---------------------------|-------------------|
| ~10 <sup>10</sup> | ~ <b>10</b> <sup>12</sup> | ~10 <sup>14</sup> |



Level 1: Individual Systems

# Scale-invariance in heartbeat fluctuations

#### Self-similar cascades



Time



P.Ch. Ivanov et al. Wavelets in Physics, (Cambridge Univ. Press, 1998).

# Scale-invariance in heartbeat fluctuations

**New Method:** 

**Individual Systems** 

Level 1:

#### Cumulative variation amplitude analysis (CVAA) Data $\rightarrow$ Wavelet Transform $\rightarrow$ Hilbert Transform $\rightarrow$ Amplitude distribution

1.0 Daytime P(x)/P<sub>max</sub> 0.0 1.0 cale a=32 P(x)/P<sub>max</sub> 0.0 ∟ 0.0 1.0 2.0 3.0 5.0 4.0 x P<sub>max</sub>

#### Universal behavior across subjects

$$P(x,b) = \frac{b^{\nu+1}}{\Gamma(\nu+1)} x^{\nu} e^{-bx}$$

Gamma distribution Generalized homogeneous function

$$P(\lambda^{\alpha} x, \lambda^{\beta} b) = \lambda P(x, b)$$
  
(\alpha = -1 \beta = 1)

Scale-invariance

"data collapse" over a range of time scales

P.Ch. Ivanov et al. Nature 383:323 (1996).



# Heartbeat fluctuations during sleep and wake



# Scale-invariance in heartbeat fluctuations

#### Scaling difference in heartbeat dynamics during sleep and wake



P.Ch. Ivanov et al. Europhys. Lett. 48: 594 (1999).

Level 1:

**Individual Systems** 



# **Locomotor system dynamics**

# **Motor Activity: Wrist motion fluctuations**

# **Motivation:**

Test hypothesis that there are *intrinsic stable patterns* in human motor activity.



Magnitudes of wrist acceleration



#### Level 1: Individual Systems

# **Locomotor system dynamics**

### **Motor Activity: Wrist motion fluctuations**



K. Hu et al. *Physica A* 337: 307 (2004).
P. Ch. Ivanov et al., *PNAS* 104: 20702 (2007).
K. Hu et al., *Neuroscience* 149: 508 (2007).



#### Smart wristband

#### Level 1: Individual Systems

### Locomotor system dynamics: wrist motion fluctuations

## Scaling exponents independent of activity level



| Protocol              | α                                                 | $\alpha_{mag}$                                    |
|-----------------------|---------------------------------------------------|---------------------------------------------------|
| Daily routine         | $\begin{array}{c} 0.92 \\ \pm \ 0.05 \end{array}$ | $\begin{array}{c} 0.78 \\ \pm \ 0.06 \end{array}$ |
| Constant routine      | $\begin{array}{c} 0.88 \\ \pm \ 0.05 \end{array}$ | $\begin{array}{c} 0.82 \\ \pm \ 0.05 \end{array}$ |
| Forced<br>desynchrony | $\begin{array}{c} 0.92 \\ \pm \ 0.03 \end{array}$ | $\begin{array}{c} 0.80 \\ \pm 0.04 \end{array}$   |

Scaling exponents --remarkably consistent for: - all subjects

- all protocols
- all days of the week.



#### **Levels of Complexity:**



Level 3: - global dynamics are not simply the sum of individual behaviors - minor changes in the interactions lead to significant global effects

#### **Currently:** No available technology and theoretical framework



- 1. Systems of oscillatory, stochastic or mixed type
- 2. Systems with non-stationary and non-linear output signals
- 3. Systems acting on different scales from msec to hours
- 4. Systems coupled with multiple coexisting forms of interaction

We made *first* inroads:

Introduced new concept – <u>*Time Delay Stability (TDS)*</u> Developed a novel method

> Infer/quantify interactions among <u>diverse</u> dynamical systems

#### Level 3: Networked Interactions

# Horizontal Integration of physiological interactions



# **Physiological interactions**

# **Physiologic recordings**

Full-night polysomnographic data from healthy young subjects:

- Brain activity EEG
- Eye movement EOG
- Muscle tone EMG
- Respiration
- Heart dynamics ECG

# **Physiologic states**

Sleep stages: wake, REM sleep, light sleep (LS), deep sleep (DS)

→ Network of dynamical interactions; study the evolution of multiple physiologic interactions across different physiologic states



→ Bursts in the dynamics of one system are coordinated with bursts in other systems with stable time delay Planen Ch

# **Transitions in the network of physiological interactions**



Data-

Driven

Discovery

Fast reorganization of network connectivity with transitions across physiologic states
Plamen Ch.







 $\rightarrow$  Network topology changes with physiologic states

#### Transitions in connectivity and link strength of Networked individual network nodes across sleep stages Interactions



Robust sleep-stage stratification pattern in:

Individual node connectivity a)

Level 3:

Average link strength of individual nodes **b**)



*Key question:* How brain communications modulate organ dynamics?



Location of the nodes: Brain EEG Channels

Colors: Frequency bands in the EEG signals

Width of the links: Coupling strength between the systems

Bartsch RP, Liu KKL, Bashan A, and Ivanov PCh.

Nework Physiology: how organ systems dynamically interact. PLOS ONE, 2015; 10(11): e0142143

# Visualization: different physiologic states

Level 3: Networked Interactions



#### Level 3: Networked Interactions

# Maps for different organ systems









# Network Physiology: Networks of brain activity and other physiologic systems across sleep stages



Level 3:

Networked







# Network Physiology: Networks of brain activity and other physiologic systems across sleep stages



Level 3:

Networked

Interactions







# **Network Physiology**

# **IOP** Institute of Physics $\xrightarrow{\prime}$ Medicine/Clinical Practice



Weighty matter Do the laws of gravity need rewriting? Sounding out subs What Rutherford did in the Great War Judgement time Publishing challenges for peer review

**Bodily functions** The new science of network physiology



# **Revealing the network within**

Can we map all the information being circulated in the human body, and would doing so be any use? Jon Cartwright explores the emerging interdisciplinary field of "network physiology"

It might seem obvious to say that every thing in the ity. Studying these fluctuations, he says, could give Jon Cartwright is a human body is connected. Without a doubt, your us an en ly new window into the workings of the freelance journalist various organs - heart, liver, lungs - work together to human body - and help us preent things going wrong, based in Bristol, UK keep you alive, and functioning as close to normally Ivanov has grand ambitions. He wants to dra

Can we map all the information being circulated in the human body, and would doing so be any use?

least the beginnings of an answer. Having developed sciences until now," he says.



# **Physiology and Medicine**

#### Atlas of Dynamic Interactions of Organ Systems

#### Atlas of Human Anatomy







→ Revolutionize our knowledge and understanding of the fundamental mechanisms that regulate and coordinate organ-to-organ interactions Plamen Ch. Ivanov, ISINP lecture, 24 July 2017



# **Physiology and Medicine**

#### Such Atlas would contain:

#### Atlas of Dynamic Interactions of Organ Systems



**Catalog of reference maps representing dynamical organ interactions under:** 

- healthy conditions
   age groups
   different physiolog
  - different physiologic states (rest/exercise, sleep/wake, sleep stages, circadian phases)
    pathological conditions (multiple organ failure, coma, heart failure, sleep apnea ...)

Quantitative assessment of variability in coupling strength for each map at a given state or condition



- Boundaries of coupling variability for normal conditions
- Establishing a <u>critical zone</u> for disease development as a function of age and physiologic state



# **Physiology and Medicine**

#### **Novel biomarkers**



#### **New kind of Physicians**



#### Personalized health monitoring



#### Next generation ICU monitoring devices and alert system



#### **Comprehensive assessment of drugs**





# **Technology and AI: Robots and Cyborgs**

Improve AI & robots, swarms of decentralized multirobot systems

#### **Cyborgs: merge physiology & technology**















# Impact

# **Big Data**

### Human Genome



# New Kind of Big Data: the Human Physiolome

# Network Physiology

Impact





Physiologic network topology Physiologic function

preliminary limited data (2012)



Atlas of Dynamic Interactions of Organ Systems

Blueprint Base Reference of Physiologic Maps (2015 – 2020)





*"Physiolome"* First Big Data on continuous parallel recordings of organ systems

Reference Catalog of Physiologic Maps on Conditions, Diseases, Drugs

Clinical practice ICU monitoring devices *(Future)* 



"Super Big Data" Daily personalized monitoring and health assessment based on Network Physiology (Future)





W.M. KECK FOUNDATION Keck Laboratory for Network Physiology



Group members: Kang Liu, Ronny Bartsch, Qianli Ma, Chuanhua Bian, Gustavo Zampier, Aijing Lin, Xiaolin Huang, Aylin Cimenser Xiyun Zhang, Wanting Xiong Fabrizio Lombardi, Chengyu Huo, Jilin Wang

Openings: • Research Scientists • Visiting Researchers

<u>Support:</u>

Our Group:

• Atlas of Dynamic Interactions among Organ Systems

W. M. KECK FOUNDATION



### **Publications:**

 Network Physiology reveals relations between network topology and physiological function. <u>Nature Communications</u> vol. 3:702 (2012)

- Phase transitions in physiologic coupling. <u>PNAS</u> vol. 109, p. 10181 (2012)
- Three independent forms of cardio-respiratory coupling: transitions across sleep stages. <u>Computing in Cardiology</u> vol. 41:781-784 (2014)
- Network Physiology: Mapping Interactions Between Networks of Physiologic Networks. In "<u>Networks of Networks: the last Frontier of Complexity</u>", <u>Springer</u> 5394; pp. 203-222 (2014)
- Network Physiology: How Organ Systems Dynamically Interact <u>Plos One</u> vol. 10(11): e0142143 (2015)

#### Support:

- W. M. Keck Foundation
- NIH 1R01-HL098437
- US–Israel Binational Science Foundation Grant 2008137
- Office of Naval Research (ONR Grant 000141010078)
- European Community project DAPHNet/FP6 IST
- Brigham&Women's Hospital Biomedical Research Institute Fund