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Different organ systems dynamically interact to accomplish vital functions 

To study the function of single organ in isolation 

• Traditional, “reductionist” approach 

• New approach, fostered by Network Physiology 

To look simultaneously at multiple organs 

Each organ system is seen as a node of a complex network of physiological interactions 

“The human organism is an integrated network where complex physiologic 

systems, each with its own regulatory mechanisms, continuously interact, and 

where failure of one system can trigger a breakdown of the entire network” 

A new field, Network Physiology, is needed to probe the interactions among 

diverse physiologic systems 

[A. Bashan et al., Nature Communications 2012] 

NETWORK PHYSIOLOGY: A NEW FIELD IN SYSTEM MEDICINE AND BIOLOGY 
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Organ Systems  Biomedical Signals Time Series 

EEG a, d, b, g wave amplitudes 

ECG heart rate 
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flow 
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EOG EOG variance 
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How to extract valuable information from physiological signals? 
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 Multiple time scales 

 non-linear dynamics 

ISSUES: 

Heart  
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• Challenging problems for physicists, engineers and physiologists 

 Nonlinear measures 

 Multivariate measures 

 Multi-scale measures 

 Multiple network nodes 

Network Physiology has high potential but is still in large part unexplored 

• We face these issues with the unifying framework of INFORMATION DYNAMICS 
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 Information-theoretic analysis of dynamical systems 

 Information Storage 

INFORMATION DYNAMICS: THEORY 

 Information Transfer 

 Information Modification 

 Information Decomposition 

 Information Measures 
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nY

n-1, n-2, …  

nY

n 

target Y 

X1 

• Investigation of Statistical dependencies: 

sources: X 

X2 

 SELF effects: 

 CAUSAL effects: 

 INTERACTION effects: nnn YXX   )( ,2,1

nn YY 

nn YX 

Physiological Networks Networks of Dynamical systems 

• Dynamic Process S 

X 

S 
Y 

… 

Z 

• With reference to a target system Y : 

S={X1,...,XM-1 , Y} = {X,Y} X={X1,...,XM-1} 


nX ,1


nX ,2

S1 

S2 

S3 

SM 

• Dynamic System  S={S1,...,SM} 

 

Information storage 

Information transfer 

Information modification 
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Storage 

Modification 
Transfer 

},,{},{ 21 YXXYXS 

X1 

Y 

X 

New 

Target information 

• Decomposition of the “information” contained in the target process 

Transfer 

X2 

YYXXYXYXYY NITTSH   2121

Information 

connectivity 

interaction 

activity 

Information Storage 

Information Transfer 

New Information 
non-predictable dynamics 

Information Modification 

THE FRAMEWORK OF INFORMATION DYNAMICS 

nY
nY


nX ,1 X1 

X2 

Y 


nX ,2

INTERACTION INFORMATION: 

),;();();();;( WUVIWVIUVIWUVI 

MUTUAL INFORMATION: 

)|()();( UVHVHUVI 

),|()|()|;( WUVHWVHWUVI 

CONDITIONAL ENTROPY: ENTROPY: 

)]([log)( vpVH  )(),()|( UHUVHUVH 

• Computation: basic information theoretic measures 
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TARGET INFORMATION DECOMPOSITION 

)( nY YHH • Present Information about Y : 

Information contained in the present of the process Y 

),|(  nnnY XYYHN• New information about Y : 

• Predictive Information about Y : 

Information contained in the past of S=(X,Y) that can be used 

to predict the present of the target Y 

),;(  nnnY XYYIP

),|(),;()(   nnnnnnn YYHYYIYH XX

Predictive 
Information  

YP YN
New created 
Information  

YH

Information  

Uncertainty about the 
present state of the target 

Information generated in the target 
by the state transition 

Predictability of the target 
given the past network states 

Information contained in the present of Y that cannot be 

predicted from the past of S=(X,Y)  
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PREDICTIVE INFORMATION DECOMPOSITION 

Information contained in the past of X that can be used to predict the 
present of Y above and beyond the information contained in the past of Y 

Predictive 
Information  

YP

)|;();(),;(   nnnnnnnn YYIYYIYYI XX

YS
Information  

Transfer 

YXT 
Information  

Storage 

• Information Storage in Y : 

Information contained in the past of Y that can be used 

to predict its present 

);(  nnY YYIS

• Information transfer from X to Y : )|;( 
  nnnYX YXYIT

nY
nY


nX

X1 

X2 

Y 

• Predictive Information about Y : 

Information contained in the past of S=(X,Y) that can be used to 
predict the present of the target Y 

),;(  nnnY XYYIP
Predictability of the target 
given the network past states 

Predictability of the target 
from its own past states 

Causal interactions from all 
sources to the target 
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INFORMATION TRANSFER DECOMPOSITION 

• Conditional information transfer: 

Information contained in the past of X1 that can be used to predict the present 
of Y above and beyond the information contained in the past of Y and X2 

 

• Interaction information transfer: 

)|;;(),|;(),|;()|;( ,2,1,1,2,2,1
  nnnnnnnnnnnnnnn YXXYIXYXYIXYXYIYYI X

Information  
Transfer 

YXT 

),|;( ,2,1| 21


  nnnnXYX XYXYIT

)|;;( ,2,1|; 21

 nnnn
Y

YXX
YXXYII

21 |XYXT  12 |XYXT 

Conditional information transfer 
Interaction 
Information  

Transfer 

Y
YXX

I
|; 21

Information contained in the past of X that can be used to predict the 
present of Y above and beyond the information contained in the past of Y 

• Information transfer from X to Y : )|;( 
  nnnYX YXYIT Causal interactions from all 

sources to the target 

Causal interactions from 
one source to the target 

Redundant or synergistic 
interactions contributing to 
transfer 

Information contained in the past of X1 and X2 that can be used to predict 

the present of Y when X1 and X2 are taken individually but not when they are 

taken together 
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INFORMATION MODIFICATION: REDUNDANCY AND SYNERGY 

REDUNDANCY: 

• Interpretation of Information Modification: 

SYNERGY: 

YXXYXYX
Y

XX
TTTI  

212121
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YXYXYXX TTT  
2121, 0
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YXXT 21,
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Y
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;
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Interaction information can be negative: synergy! 

YXXT 21,

YXT 2

YXT 1 YXT 2

Y
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I
21;
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THE FRAMEWORK OF INFORMATION DYNAMICS 

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular 
networks', Entropy, special issue on Multivariate Entropy Measures and their applications, 2017, 19(1), 5 

causal connectivity interaction between systems 

Information Transfer New Information 
unpredictable dynamics 

Information Modification 

Y
YXXXYXXYXYYYXYYYYY ITTSNTSNPNH
|;||

211221
 

Predictive Interaction 
Transfer 

Conditional  Transfer 

predictable activity 

Information Storage Information 

Storage 

Modification Transfer 

New 

Target information 

Transfer 

X1 

Y 

X 

X2 

L Faes, A Porta, G Nollo, 'Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics', Entropy, special issue on “Entropy and 
Cardiac Physics”, 2015, 17:277-303. 

direct causal connectivity 
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INFORMATION DYNAMICS: ESTIMATION 

 Linear model-based estimator 

 Nonlinear model-free estimators  Kernel 

 Nearest neighbor 


 Binning 

 Challenges of model-free estimation 
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• All measures of Information dynamics are expressed in terms of measures of  
(conditional) entropy, (conditional) mutual information, or interaction information  

PRACTICAL COMPUTATION OF INFORMATION DYNAMICS 

• Estimation of entropy for variables with different dimension  

• Example: Information Storage 

Discrete variables 

Continuous variables 

nY

Approximation of the past history 

Computation 
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PARAMETRIC ESTIMATION: LINEAR METHOD 

• Exact Computation under the assumption of Gaussianity 

)(2ln
2

1
)( nnY YeYHH 

nLnLnn WYaYaY   11linear regression of Yn on Yn-1,..., Yn-L :
 

)|(2ln
2

1
)|()|( L

nn
L

nnnn YYeYYHYYH L
nn YY 

 Conditional Entropy of Yn given              :  

 Entropy of Yn :  

2

2

ln
2

1

W

Y




 Information Storage of Y : )|()();( L

nnnnnY YYHYHYYIS  

[Barnett et al, Phys Rev Lett 2009] 

• Example: L=1 

1
1

 nn
L

n YYY

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular 
networks', Entropy, special issue on Multivariate Entropy Measures and their applications, 2017, 19(1), 5 
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NONPARAMETRIC ESTIMATION: BINNING METHOD 
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 Target Information of Y : 

 Information Storage of Y : 
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L
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1
1
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L Faes, A Porta, 'Conditional entropy-based evaluation of information dynamics in physiological systems', in Directed Information Measures in Neuroscience, R 
Vicente, M Wibral, J Lizier (eds), Springer-Verlag; 2014, pp. 61-86 

Q=3 

• Discretization of continuous random variables using quantization levels 
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NONPARAMETRIC ESTIMATION: KERNEL METHOD 
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• Example: L=1 

1
1

 nn
L

n YYY

W Xiong, L Faes, P Ch Ivanov, 'Entropy measures, entropy estimators and their performance in quantifying complex dynamics: effects of artifacts, 
nonstationarity and long-range correlations', Phys. Rev. E, in press, 2017. 
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• Entropy computation using kernel functions to weight distances between points 

• Probability of d-dimensional variable X :  
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Heaviside kernel function: 

)(ˆlog)]([log)( xpxpXH • Entropy:  

 Target Information of Y : 

 Information Storage of Y : 
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NONPARAMETRIC ESTIMATION: NEAREST NEIGHBOR METHOD 

• Entropy computation from the statistics of distances between neighboring points in 
a multidimensional space 

• Strategy for bias compensation in the estimation of entropies for variables of different dimension 

ndNk  log)()( )]([log)( xpXH
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n

L
n

YY
NNkN 

Digamma function 
dx

xd
x

)(log
)(




2∙distance from xn to its k-th neighbor 

number of outcomes of X 

:

:N

:

Example: L=1 1
1
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n
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L

n LNNYH L
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 log)()()(ˆ

Range Search 

Neighbor Search 

)(ˆ),(ˆ)(ˆ L
n

L
nnnY YHYYHYHS 

nYn NNYH
n

 log)()()(ˆ

Range Search 

number of outcomes of        with distance to       strictly lower than n/2 
L

nY
L
ny

distance from                 to its k-th neighbor in the outcomes of ),( L
nn yy ),( L

nn YY

L Faes, D Kugiumtzis, A Montalto, G Nollo, D Marinazzo, 'Estimating the decomposition of predictive information in multivariate systems', Phys. 
Rev. E 2015; 91:032904. 
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ESTIMATION: SIMULATION EXAMPLE 

nn
d UYLLA  )1)((• Fractionally-integrated autoregressive process: 

• Test on stochastic process with short-term dynamics and long-range correlations 

222cos21)( LLfLA  Autoregressive polynomial:  

sets stochastic oscillation with amplitude  and frequency f 










0
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k
d

kd

Ldk
LFractional differencing:  

sets long-range correlations depending on the differencing parameter d 
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• Estimation of Entropy, Conditional Entropy and Information Storage 

L=2 
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true
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• Estimation: theoretical profiles and estimates, linear method 



W Xiong, L Faes, P Ch Ivanov, 'Entropy measures, entropy estimators and their performance in quantifying complex dynamics: effects of artifacts, 
nonstationarity and long-range correlations', Phys. Rev. E, in press, 2017. 
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• Estimation: theoretical profiles and estimates, non-parametric model-free methods 

ESTIMATION: SIMULATION EXAMPLE 

Kernel estimator: 

Nearest neighbor 
estimator: 

Binning estimator: 
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MODEL-FREE ESTIMATION: APPROXIMATION OF THE SYSTEM PAST 

• Uniform embedding (UE): ][
XXX mLnmnn XXX 

   ][
YYY mLnmnn YYY 

  

• Sequential procedure: 

UE introduces irrelevant and redundant components Curse of dimensionality 

• Non-uniform embedding (NUE): The embedding vector is formed progressively, including at 

each step the lagged variable better describing the target process 

L Faes, G Nollo, A Porta: 'Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding 
technique', Physical Review E; 2011; 83(5 Pt 1):051112. 

(a) k=0: 

Set of initial candidate components  

Initial embedding vector: 

Initialization 

(e.g.,  ={Xn-1,...,Xn-L ,Yn-1,...,Yn-L})  

][)0( nV

(b) k≥1: 

Select the component  Wn   that maximizes 

Selection – maximum relevance, minimum redundancy 

)|,( )1( k
nnn VWYI ],ˆ[ )1()(  k

nn
k

n VWV

(c)  Termination – randomization test 

Generate N surrogates of         by sample shuffling:  ;   Threshold for  

; final set of components:  

: Ith 

Stop if 

nŴ )()1( ˆ,...,ˆ NS
n

S
n WW )|ˆ,( )1( k

nnn VWYI

th
k

nnn IVWYI  )|ˆ,( )1( )1(  k
nn VV

],[ Y
n

X
nn

VVV  Y
nn

X
nn VYVX  (d)  After termination – embedding vector 
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INFORMATION DYNAMICS: 
APPLICATIONS TO NETWORK 

PHYSIOLOGY 

 Short-term Cardiovascular, Cardiorespiratory, Cerebrovascular control 

 Brain-heart and brain-brain interactions during sleep 

 Brain networks (EEG, fMRI) and muscular networks (EMG)  
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PRACTICAL APPLICATIONS OF INFORMATION DYNAMICS 

Network of cardiovascular, cardiorespiratory and cerebrovascular 
short-term physiological interactions  

RR(n)  

SAP(n) 

Arterial Pressure 

RF(n) 

Heart Rate 

Respiration Flow 

B
a
r
o

r
e
fl

e
x
 

CBFV(n) 

Cerebral blood flow 

Cerebral  
autoregulation 
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REST T15 T30 T45 T60 T75 T90 

Graded 
Head-up tilt protocol 

• The dynamical complexity of short-term heart period variability decreases progressively with tilt-table angle  

• Complexity assessed by linear model-based estimators significantly correlates with model-free estimates 

Applications: CARDIAC CONTROL 

A Porta, B De Maria, V Bari, A Marchi, L Faes, 'Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control 
superior to a linear model-based one?',  IEEE Trans. Biomed. Eng., in press, 2017 

17 young healthy subjects 

• Linear estimator 

Linear vs. Kernel (ApEn) Linear vs. Kernel (SampEn) Linear vs. binning Linear vs. nearest neighbors 

New Information 

Information Storage 

YN

YS

• Univariate analysis 

Information Storage Conditional Entropy=New Information 
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Applications: CARDIOVASCULAR and CARDIORESPIRATORY INTERACTIONS 

L Faes, A Porta, G Nollo, M Javorka, 'Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular 
networks', Entropy, special issue on Multivariate Entropy Measures and their applications, 2017, 19(1), 5 

Y
YXXXYXXYXYX

YXYYY

ITTT

TSNH

|;||
211221









• Protocol: 61 young healthy subjects during head-up tilt and mental stress tasks 

? 

B: baseline T: head-up tilt R: recovery M: mental arithmetics 

• Linear estimator 

• Network analysis 

full information decomposition: 

• Measured time series: 

• Heart period (H) 

target: Y=H 

• Systolic arterial pressure (S) 

• Respiration (R) 

300 points in each condition 
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YYXYY NTSH  

ECG 

Finger 
Arterial 
pressure 

Doppler 
blood flow 
velocity 

Entropy decomposition: 

Supine 60° head-up tilt Early Tilt 
~ 2 min 

Late Tilt 
~15 min or at presyncope 

Applications: CARDIOVASCULAR AND CEREBROVASCULAR INTERACTIONS 

• Signals and time series 

Information Storage 

Information Transfer 

New Information 

Information 

• Results • Protocol: 10 subjects with postural-related syncope 

L Faes, A Porta, G Rossato, A Adami, D Tonon, A Corica, G Nollo: 'Investigating the mechanisms of cardiovascular and cerebrovascular regulation in 
orthostatic syncope through an information decomposition strategy', Autonomic Neuroscience 2013; 178:76-82. 

• Binning estimator with NUE 

• Bivariate analysis, target HP or FV 
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PRACTICAL APPLICATIONS OF INFORMATION DYNAMICS 

Network of brain-heart and brain-brain physiological interactions during sleep  

RR(n)  

ECG 

HRV 
FFT 

LF HF 

0.4 0.04 

P
 (

 f
 )

 

0.15 

f [Hz] 

R peak location 

RR intervals 

R
R
(n

) 
[m

s
] 

n [beats] 

PSD HRV 

• Spectral analysis of heart rate variability (HRV) 

RR(n+1)  RR(n-1)  

• Spectral analysis of EEG activity 

d 

12 0 8 

q 

a 

 b 

3 16 25 

Brain wave amplitudes: FFT 

P
 (

 f
 )

 

f [Hz] 

PSD EEG 
EEG 

Pd , Pq , Pa, P, Pb  

Network of dynamic 
processes: 

REM 

b 

Deep Sleep 

Light Sleep 

h 
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Applications: BRAIN-BRAIN AND BRAIN-HEART INTERACTIONS 

Full Night Light Sleep Deep Sleep REM Sleep 

L Faes, G Nollo, F Jurysta, D Marinazzo, 'Information dynamics of brain-heart physiological networks during sleep', New Journal of Physics 2014; 16:105005. 

ZXYS ,|

ZYXT |

Information Transfer: Internal Information: 

N. of subjects with statistically significant link: 

• Linear estimator 

• Network analysis Conditional information transfer + internal information 

Statistical significance assessed by F-test  

• Protocol: full night polysomnography in 10 healthy subjects 

The interaction network is sustained by the sleep stage transitions 

Structured brain-heart and brain-brain network, with the EEG b wave acting as network hub 
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L Faes, D Marinazzo, S Stramaglia, F Jurysta, A Porta, G Nollo, 'Predictability decomposition detects the impairment of brain-heart dynamical networks 
during sleep disorders and their recovery with treatment', Phil. Trans. R. Soc. A 2016; 374:20150177. 

Cardiac dynamics are more 
complex during sleep apneas, 
with no recovery after 
treatment 

SAHS CPAP CTRL 

brain  heart causal 
interactions are impaired 
by sleep apneas, and 
partially restored by 
CPAP therapy 

SAHS  8 sleep apnoea-hypopnoea patients   

 same patients after continuous positive airway pressure therapy    CPAP 

 14 healthy controls CTRL 

Redundancy is a feature of 
undisturbed sleep, lost in 
SAHS and recovered by 
treatment 

Cardiac  
Information Storage 

brain  heart 
Information Transfer 

brain  heart Information Modification 

SAHS CPAP CTRL 

Applications: BRAIN-HEART INTERACTIONS IN SLEEP APNEAS 
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Applications: MULTISCALE BRAIN-HEART INTERACTIONS 
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• Procedure for rescaling  
 a (vector) time series 

• Multiscale representation of vector Autoregressive processes using state-space models 

• Exact computation of Information Dynamics for multivariate Gaussian processes 

Information dynamics after rescaling can be obtained from the original VAR parameters and the scale factor  

L Faes, S Stramaglia, G Nollo, D Marinazzo ‘Multiscale Granger causality', Phys Rev E; under revision, 2017. 

Cardiac dynamics Brain dynamics 

time scale 5 

time scale 12 

time scale 1 
• Multiscale methods to study individual dynamics 

are well established 

• Multiscale computation of information transfer is 

non-trivial 

? 

? 
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• Generally low transfer 

• High Storage of cardiac dynamics 
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scale  5 s 

scale  scale  

Wake, REM sleep : 

Applications: MULTISCALE BRAIN-HEART INTERACTIONS 

L Faes, D Marinazzo, S Stramaglia, A Montalto, G Nollo, ‘Multiscale information-theoretic analysis of coupled processes: theory and application to brain-
heart interactions', Brain Modes 2017;  Bruxelles, Belgium, Dec 1-3 2016. 

scale  60 s 5 s 60 s 

5 s 60 s 5 s 60 s 

• Low Storage of brain dynamics 

• Generally low storage 

• High transfer heart  brain 

Light sleep , Deep sleep : 

• Low transfer brain  heart 
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PRACTICAL APPLICATIONS OF INFORMATION DYNAMICS 

Physiological networks: EEG brain networks and muscular networks  

• Study of networks formed by multichannel acquisitions of the same biomedical signal 

Brain Networks Muscular Networks 

Scalp multichannel EEG Whole-body multichannel EMG 
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Information Dynamics of Scalp EEG Networks 

L Faes, D Marinazzo, G Nollo, A Porta 'An information-theoretic framework to map the spatio-temporal dynamics of the scalp electroencephalogram', 
IEEE Trans. Biomed. Eng., special issue on Brain Connectivity, 2016; 63(12):2488-2496 

TRANSFER  
ENTROPY 

CONDITIONAL 
TRANSFER ENTROPY 

EYES  
CLOSED 

EYES 
OPEN 

INSTANTANEOUS 
EFFECTS 

Classical measures 

Compensated measures 

• Uniform Information transfer 

• Dense connectivity between 
adjacent sensors 

• Instantaneous dependencies 
between all sensors 

• Patterns unchanged between 
conditions 

EYES  
CLOSED 

EYES 
OPEN 

• Abolishment of instantaneous 
correlations 

• Emergence of patterns of causal 
connectivity 

Local sinks of information flow: 
• anterior during EO 
• anterior + occipital during EC 

Y :target  

X :sources  

TRANSFER  
ENTROPY 

Y :target  

X :source  
Z :other  

TRANSFER  
ENTROPY 

CONDITIONAL 
TRANSFER ENTROPY 

INSTANTANEOUS 
EFFECTS 

PARTIAL 
TRANSFER  
ENTROPY 

• Nearest neighbor estimate of information transfer and conditional information transfer between all sensors 

• Protocol: scalp EEG in 21 healthy subjects during eyes open and eyes closed 
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Information Dynamics of Muscle Networks 

• Protocol: multichannel EMG in 14 healthy subjects 

• Conditions: standing and pointing to a target during normal altered stability 

NORMAL  
STABILITY 

ANTERO-
POSTERIOR 

 INSTABILITY 

Information Storage 

REST POINT 

Information Transfer 

REST POINT 

Redundant Transfer 

REST POINT 

Synergistic Transfer 

REST POINT 

0.029 

0.076 

jTjS

0.26 

0.53 

0.00005 

0.008 

jikR 

0.00005 

0.003 

jikS 

L Faes, D Marinazzo, TJ Boonstra, J Kerkman, ‘An exploration of information storage, transfer and modification in whole-body human muscular 
networks',  in preparation, 2017. 

 transfer to leg muscles 
during instability 

 Storage in leg muscles  
during instability 

 transfer with pointing 

 Storage in chest at rest 

 Storage with pointing 

 Transfer to chest at rest  Redundancy to chest at rest 

 Redundancy with pointing 

 Synergy at rest 

 Synergy to chest and leg 
during instability 
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INTRODUCTION Network Physiology and Information Dynamics 

“The human organism is an integrated network where complex physiologic 

systems, each with its own regulatory mechanisms, continuously interact, and 

where failure of one system can trigger a breakdown of the entire network” 

SYSTEMS SIGNALS INFORMATION DYNAMICS 

EEG 

ECG 
Heart rate 

Arterial  
pressure 

Blood flow 

ZYXT | XYZT |YXZI 

YS

ZXYU ,|

Information Storage 

Information Transfer 

Information Modification 

A new field, Network Physiology, is needed to probe the interactions among 

diverse physiologic systems 

[A. Bashan et al., Nature Communications 2012] 
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http://www.lucafaes.net/its.html 

ITS Toolbox: 
A Matlab toolbox for the practical computation 

of Information Dynamics  

faes.luca@gmail.com 
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