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Growth of brain network science: connectomics

network science brain imaging technology
graph theory of complex topology from macro to micro

rapid growth of connectomics
WoK search on <brain> AND <graph>

Published Items in Each Year Citations in Each Year

12,000
11,000

650
600
550

500
9,000

10,000
450
400 8,000
350 7,000
300 6,000
250 5,000
200 4,000
150 3,000
50 I 1,000 ll
3 gsg ¥ !3
oog oo

"




Graph theoretical analysis of magnetic resonance imaging
(MRI) of the human brain

Vértes et al (2011) YouTube



From human neuroimaging to association matrices
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From an association matrix to a brain graph
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...then draw the adjacency matrix as a graph
representing the strongest X% of edges as
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Threshold the association matrix so that the
strongest X% of associations are represented
as 1sin a binary (0 or 1) adjacency matrix... Bullmore & Bassett (2011) Ann Rev Clin Psychol



From neuroimaging to human brain graphs
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Graph theory

a Hub node b Modularity ¢ Rich club
. ™ P

Schroter, Paulsen & Bullmore (2017) Nat Rev Neuro



Topological hubs and modules of a brain graph
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The central challenge is biological validation of human
MRI networks

e Macro scale networks ~ 102 m, cm
» Noisy data not measured in Sl units

* No gold standard for human brain
networks

 No agreed biophysical explanation
for functional connectivity or
structural covariance

e What do these results mean in
terms that other neuroscientists
can understand and respect?
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The multi-scale organization of brain anatomy

Macro 10?2 m
e MRI, fMRI, DWI

Meso 10*m
* Tract tracing

. Micro 10°®m
e Electron microscopy

(b) tom (c) Tmm N 100 um

Molecular
* (Gene expression

Lichtman & Denk (2011)



Analogical or reductionist connectomics:
Two strategies for integration across scales of brain network

organization

Analogical

Make an informative comparison
between human MRI networks and
more precisely known nervous
systems in other species

Reductionist

Link human MRI network
organization to human cellular or
genomic biology



Connectomes
from micro to macro

C. elegans Drosophila

Macaque
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Modular community structure of human MRI networks
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Mesoscale connectomics of mammalian cortex has been
accelerated by advances in tract-tracing technology
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(a) Yeterian & Pandya (1991) J Comp Neurol; (b) Osten & Margrie (2013) Nature Methods;
(c) Oh et al (2014) Nature



Multiple tract-tracing experiments for estimation of anatomical
connectivity and wiring cost in the mouse connectome

Wiring cost
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The mouse connectome has a community structure
comprising functionally specialised hierarchical modules
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C elegans and Drosophila connectomes also have a
community structure of functionally specialised modules
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(a) Varshney et al (2010) PLoS Comput Biol
(b) (b) Shih et al (2015) Curr Biol
Simon (1965) Architecture of Complexity

Motor and sensory neuronal modules are “nearly-decomposed”
or almost completely segregated from each other

In the worm, the interneuronal module has a more integrative
role, linking sensory and motor modules



Human DTI macro scale networks have a high cost,
highly integrative rich club
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High degree hub nodes of the DTI connectome are more
densely inter-connected than chance — a rich club

Rich-rich and rich-peripheral (feeder) connections are more
expensive (long distance) than connections between spatially
neighbouring, topologically peripheral nodes

Feeder connections to rich-club nodes mediate many of the
shortest paths between spatially distributed peripheral nodes

communication
cost of paths
through RC

F-RF-LF ,h‘
¢ s

0

van den Heuvel et al (2012) Proc Natl Acad Sci USA



The C elegans micro scale connectome has a high

cost, highly integrative rich club
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High degree hub neurons of the worm EM connectome are
more densely inter-connected than chance — a rich club

Rich-rich and rich-peripheral (feeder) connections are more
expensive (long distance) than connections between spatially
neighbouring, topologically peripheral nodes

Feeder connections to rich-club nodes mediate many of the
shortest paths between spatially distributed peripheral nodes
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A generative model that optimises wiring cost is not
sufficient to recapitulate the human DTI macro network

P(u,v) = E(u,v)"" x K(u,v)¥
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Results favouring cost-topology trade-off models, compared to cost-minimization models

Betzel et al (2016) Neurolmage

were internally replicated across 4 independently designed and conducted DTI studies




A generative model that minimizes wiring cost is not sufficient
to recapitulate the mouse tract-tracing meso network
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High degree hub regions have high participation — indicating a high ratio of inter-modular to intra-modular efferent
axonal projections from hi-par regions

Hi-par regions have higher wiring cost and the power law relationship between anatomical connectivity strength (NCD)
and axonal distance has a less negative exponent a, indicating that connectivity strength falls off less sharply as a
function of increasing distance between hi-par nodes

A generative model that minimizes wiring cost (tract distance) approximately reproduces the topologically and spatially
clustered specialist modules but not the more integrative hi-par nodes

Rubinov, Ypma et al (2015) Proc Natl Acad Sci USA



Number of areas

Analogical or comparative analysis across scales and species
will often be conditioned by methodological differences
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Contemporary tract tracing indicates that weight of anatomical connectivity is log-
normally distributed over 5 orders of magnitude

The weaker connections — low fraction of labelled neurons (FLNe) are often new
found projections (NFPs), not known to classical tract-tracing techniques

The connection density of macaque (and mouse) cortex is >60% -much less sparse
than previously estimated

In contrast, human MRI networks will often have connectivity estimated by
correlations in the range (-1,1) and thresholded graph density in the range 5-30%



Comparative connectomics supports general
economical principles of brain network organization
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Economical principle of a trade-off between minimization of biological costs
versus maximisation of the integrative capacity of the network

Kaiser & Hilgetag (2006) PLoS Comp Biol; Bullmore & Sporns (2012) Nat Rev Neurosci



What’s special about the human brain network?

Rentian scaling as a measure of topological dimension, economical
embedding and allometric scaling in chips and brains
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Conservation laws of nervous systems

“Finally we realized that all of the
various conformations of the neuron
are simply morphological adaptations
governed by laws of conservation for
time, space and material which must
be considered the final cause of all

variations in the shape of neurons”

Ramodn y Cajal (1899-1904) Histology of the Vertebrate Nervous System
(Translated: Swanson & Swanson (1995))




Universality and self-similarity

What’s special about brain networks?

Lo
QY Xy
‘;@m )
N

Jl«a

DA
9
i ’%‘v\‘ X
W

Ramon y Cajal (1895); CLARITY; Bassett et al (2010) PLoS Comp Biol



Conclusions

e Biological validation of human MRI networks can be addressed by
analogical (comparative) or reductionist strategies

* Analogously or comparatively, many aspects of MRI network topology
have been recapitulated in more certainly known brain networks

* Reductionistically, we are entering an exciting phase of being increasingly
able to link MRI network topology to cellular organization, neuronal network
dynamics, myelination, and gene expression

e A common theme emerging from both analogical and reductionist analyses is
the economical principle that more integrative elements of network topology
are more biologically expensive
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