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Growth of brain network science: connectomics 

network	science		
graph	theory	of	complex	topology	

	

brain	imaging	technology	
from	macro	to	micro	

rapid	growth	of	connectomics		
WoK	search	on	<brain>	AND	<graph>		

	



Vértes	et	al	(2011)	YouTube		

Graph theoretical analysis of magnetic resonance imaging 
(MRI) of the human brain 



From human neuroimaging to association matrices 

Bullmore	&	BasseZ	(2011)	Ann	Rev	Clin	Psychol	



15%	density	 30%	density	 45%	density	

Threshold	the		associa?on	matrix	so	that	the	
strongest	X%	of	associa?ons	are	represented	
as	1s	in	a	binary	(0	or	1)	adjacency	matrix…	

…then	draw	the	adjacency	matrix	as	a	graph	
represen?ng	the	strongest	X%	of	edges	as	
lines	or	edges	drawn	between	nodes.	

From an association matrix to a brain graph 

Bullmore	&	BasseZ	(2011)	Ann	Rev	Clin	Psychol	



From	neuroimaging	to	human	brain	graphs	

BasseZ	&	Bullmore	(2010)	Curr	Op	Neurol	
	Bullmore	&	BasseZ	(2011)	Annu	Rev	Clin	Psychol	

Alexander-Bloch	et	al	(2013)	J	Neurosci		

Defining	
nodes	

Defining	
edges	



Graph theory 

Schröter,	Paulsen	&	Bullmore	(2017)	Nat	Rev	Neuro	



Topological hubs and modules of a brain graph 

Bullmore	&	Sporns	(2009)	Nature	Reviews	Neuroscience	



The central challenge is biological validation of human 
MRI networks 

•  Macro scale networks ~ 10-2 m, cm 
 
•  Noisy data not measured in SI units 
 
•  No gold standard for human brain 

networks 
 
•  No agreed  biophysical explanation 

for functional connectivity or 
structural covariance 

 
•  What do these results mean in 

terms that other neuroscientists 
can understand and respect? 



Darwin’s	finches	

Analogy	

Double	helix	

Reduc8onism	



The multi-scale organization of brain anatomy 

Lichtman	&	Denk	(2011)		

Macro	10-2	m	
•  MRI,	fMRI,	DWI	

Meso	10-4	m	
•  Tract	tracing	

Micro	10-6	m	
•  Electron	microscopy	

Molecular	
•  Gene	expression	



Analogical or reductionist connectomics:  
Two strategies for integration across scales of brain network 
organization 

Analogical	
	
Make	an	informa?ve	comparison	
between	human	MRI	networks	and	
more	precisely	known	nervous	
systems	in	other	species	

Reduc8onist	
	
Link	human	MRI	network	
organiza?on	to	human	cellular	or	
genomic	biology	
	



Connectomes 
from micro to macro 

Van	den	Heuvel	et	al	(2016)	Trends	in	Cogni+ve	Sciences	



Modular community structure of human MRI networks 

Meunier	et	al	(2010)	Fron+ers	Neuroscience	



Mesoscale connectomics of mammalian cortex has been 
accelerated by advances in tract-tracing technology 

(a)  Yeterian	&	Pandya	(1991)	J	Comp	Neurol;	(b)	Osten	&	Margrie	(2013)	Nature	Methods;		
(c)	Oh	et	al	(2014)	Nature		



Sterling & Laughlin (2015) Principles of Neural Design. MIT Press. 
Rubinov, Ypma et al (2015) Proc Natl Acad Sci USA  

Multiple tract-tracing experiments for estimation of anatomical 
connectivity and wiring cost in the mouse connectome  

Wiring cost 
	
•  Axonal projection is biologically expensive 
 
•  Membrane repolarisation by active ion 

transport is a major cost on the neuronal 
energy budget 

 
•  Axonal distance in 1D (often simply 

Euclidean distance) is a common proxy for 
wiring cost 

 
•  Anterograde viral tract tracing data allow 

more precise estimation of curvilinear 
axonal distance, and cross-sectional area or 
bandwidth of directed axonal projections, 
from source to target regions 

 
•  Modeling the axonal tract as a “serpentine 

cylinder”, is a volumetric (rather than linear) 
estimator of wiring cost  



The mouse connectome has a community structure 
comprising functionally specialised hierarchical modules 

Rubinov,	Ypma	et	al	(2015)	Proc	Natl	Acad	Sci	USA		



C elegans and Drosophila connectomes also have a 
community structure of functionally specialised modules 

(a) Varshney et al (2010) PLoS Comput Biol  
(b)  (b) Shih et al (2015) Curr Biol  
Simon (1965) Architecture of Complexity 

olfactory	

visual	visual	

premotor	auditory	/	
mechanosensory		

Motor and sensory neuronal modules are “nearly-decomposed” 
or almost completely segregated from each other 
 
In the worm, the interneuronal module has a more integrative 
role, linking sensory and motor modules 



Human DTI macro scale networks have a high cost, 
highly integrative rich club 

van	den	Heuvel	et	al	(2012)	Proc	Natl	Acad	Sci	USA	

High degree hub nodes of the DTI connectome are more 
densely inter-connected than chance – a rich club 
 
Rich-rich and rich-peripheral (feeder) connections are more 
expensive (long distance) than connections between spatially 
neighbouring, topologically peripheral nodes 
 
Feeder connections to rich-club nodes mediate many of the 
shortest paths between spatially distributed peripheral nodes  



The C elegans micro scale connectome has a high 
cost, highly integrative rich club 

Towlson et al (2013) J Neurosci 

High degree hub neurons of the worm EM connectome are 
more densely inter-connected than chance – a rich club 
 
Rich-rich and rich-peripheral (feeder) connections are more 
expensive (long distance) than connections between spatially 
neighbouring, topologically peripheral nodes 
 
Feeder connections to rich-club nodes mediate many of the 
shortest paths between spatially distributed peripheral nodes  



A generative model that optimises wiring cost is not 
sufficient to recapitulate the human DTI macro network 

Probability	of	connec?on	
between	nodes	u	and	v	

Euclidean	distance	
between	nodes	

Topological	rela?onship	
between	nodes	

Op8mising	distance	parameter	only:	η	 Op8mising	distance	&	topology	parameters:	η,	γ	

Betzel	et	al	(2016)	NeuroImage	Results favouring cost-topology trade-off models, compared to cost-minimization models 
were internally replicated across 4 independently designed and conducted DTI studies 



A generative model that minimizes wiring cost is not sufficient 
to recapitulate the mouse tract-tracing meso network 

Rubinov, Ypma et al (2015) Proc Natl Acad Sci USA 

High degree hub regions have high participation – indicating a high ratio of inter-modular to intra-modular efferent 
axonal projections from hi-par regions 
 
Hi-par regions have higher wiring cost and the power law relationship between anatomical connectivity strength (NCD) 
and axonal distance has a less negative exponent α, indicating that connectivity strength falls off less sharply as a 
function of increasing distance between hi-par nodes 
 
A generative model that minimizes wiring cost (tract distance) approximately reproduces the topologically and spatially 
clustered specialist modules but not the more integrative hi-par nodes 



Analogical or comparative analysis across scales and species 
will often be conditioned by methodological differences 

Markov et al (2012) Cereb Cortex 
Markov et al (2013) Science 

Contemporary tract tracing indicates that weight of anatomical connectivity is log-
normally distributed  over 5 orders of magnitude 
 
The weaker connections – low fraction of labelled neurons (FLNe)  are often new 
found projections (NFPs), not known to classical tract-tracing techniques   
 
The connection density of macaque (and mouse) cortex is >60% -much less sparse 
than previously estimated 
 
In contrast, human MRI networks will often have connectivity estimated by 
correlations in the range (-1,1) and thresholded graph density in the range 5-30%  



Comparative connectomics supports general 
economical principles of brain network organization	

Economical	principle	of	a	trade-off	between	minimiza?on	of	biological	costs	
versus	maximisa?on	of	the	integra?ve	capacity	of	the	network	

Kaiser	&	Hilgetag	(2006)	PLoS	Comp	Biol;	Bullmore	&	Sporns	(2012)	Nat	Rev	Neurosci	



What’s	special	about	the	human	brain	network?		
Ren?an	scaling	as	a	measure	of	topological	dimension,	economical	
embedding	and	allometric	scaling	in	chips	and	brains	

High	dimensional	(>4)	brains	
and	VLSI	circuits	are	both	
economically	embedded	in	
lower	dimensional	physical	
space	(3)	with	hierarchical	
modularity	and	near-minimal	
Rent	exponents		

Bassett et al (2010) PLoS Comp Biol 



Conservation laws of nervous systems 

“Finally	we	realized	that	all	of	the	
various	conforma?ons	of	the	neuron	
are	simply	morphological	adapta?ons	
governed	by	laws	of	conserva?on	for	
?me,	space	and	material	which	must	
be	considered	the	final	cause	of	all	
varia?ons	in	the	shape	of	neurons”	

Ramón	y	Cajal	(1899-1904)	Histology	of	the	Vertebrate	Nervous	System	
(Translated:	Swanson	&	Swanson	(1995))	



Universality and self-similarity 

What’s	special	about	brain	networks?	

Do	brain	networks	have	fractal	paZerning	from	micro	to	macro	scales?		

Ramón	y	Cajal	(1895);	CLARITY;	BasseZ	et	al	(2010)	PLoS	Comp	Biol	



Conclusions	

•  Biological	valida?on	of	human	MRI	networks	can	be	addressed	by	
analogical	(compara?ve)	or	reduc?onist	strategies	
	

•  Analogously	or	compara?vely,	many	aspects	of	MRI	network	topology	
have	been	recapitulated	in	more	certainly	known	brain	networks	

	
•  Reduc?onis?cally,	we	are	entering	an	exci?ng	phase	of	being	increasingly	

able	to	link	MRI	network	topology	to	cellular	organiza?on,	neuronal	network	
dynamics,	myelina?on,	and	gene	expression	

•  A	common	theme	emerging	from	both	analogical	and	reduc?onist	analyses	is	
the	economical	principle	that	more	integra?ve	elements	of	network	topology	
are	more	biologically	expensive	
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